首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We report an edge-emitting mid-infrared (IR) (/spl lambda/=3.3-3.7 /spl mu/m) "W" laser incorporating an optical-pumping injection cavity (OPIC). The active region of the W-OPIC is sandwiched between two Bragg mirrors that significantly enhance the pump-beam absorptance at /spl lambda//sub pump/=2.098 /spl mu/m. Pulsed experiments demonstrate that besides suppressing the threshold pump intensity, this design enhances the differential power conversion efficiency (e.g., 7.1% per uncoated facet at 220 K) and lowers the internal loss (e.g., 20 cm/sup -1/ at 240 K) compared with all previous optically pumped mid-IR lasers.  相似文献   

2.
We report the light-current (L-I), spectral, and far-field characteristics of quantum cascade lasers (QCLs) with seven different wavelengths in the /spl lambda/=4.3 to 6.3 /spl mu/m range. In continuous-wave (CW) mode, the narrow-stripe (/spl ap/13 /spl mu/m) epitaxial- side-up devices operated at temperatures up to 340 K, while at 295 K the CW output power was as high as 640 mW with a wallplug efficiency of 4.5%. All devices with /spl lambda//spl ges/4.7 /spl mu/m achieved room-temperature CW operation, and at T=200 K several produced powers exceeding 1 W with /spl ap/10% wallplug efficiency. The data indicated both spectral and spatial instabilities of the optical modes. For example, minor variations of the current often produced nonmonotonic hopping between spectra with envelopes as narrow as 5-10 nm or as broad as 200-250 nm. Bistable beam steering, by far-field angles of up to /spl plusmn/12/spl deg/ from the facet normal, also occurred, although even in extreme cases the beam quality never became worse than twice the diffraction limit. The observed steering is consistent with a theory for interference and beating between the two lowest order lateral modes. We also describe simulations of a wide-stripe photonic-crystal distributed-feedback QCL, which based on the current material quality is projected to emit multiple watts of CW power into a single-mode beam at T=200 K.  相似文献   

3.
We report on the demonstration of continuous-wave (CW) operation of GaInAs-AlGaAsSb quantum cascade (QC) lasers. By placing a 2.5-/spl mu/m-thick gold layer on both sides of the laser ridge to extract heat from the active region in the lateral direction, together with mounting the device epilayer down, we have achieved CW operation of GaInAs-AlGaAsSb QC lasers composed of 25 stages of active/injection regions. The maximum CW operating temperature of the lasers is 94 K, and the emission wavelength is around /spl lambda//spl sim/4.65 /spl mu/m. For a device with the size of 10/spl times/2000 /spl mu/m/sup 2/, the CW optical output power per facet is 13 mW at 42 K and 4 mW at 94 K. The CW threshold current density is 1.99 kA/cm/sup 2/ at 42 K, and 2.08 kA/cm/sup 2/ at 94 K, respectively.  相似文献   

4.
High-power 1.06 mu m double channel planar buried-heterostructure (DCPBH) lasers have been fabricated by liquid-phase epitaxy. AT 20 degrees C, the threshold current is 80 mA and CW output powers of 20 mW can be obtained. Under pulsed operation, quantum efficiencies of 0.37 W/A per facet and maximum pulse output powers of 150 mW are realised, while maintaining the lowest-order spatial mode and a symmetrical far-field distribution.<>  相似文献   

5.
High-temperature high-power continuous-wave (CW) operation of high-reflectivity-coated 12-/spl mu/m-wide quantum-cascade lasers emitting at /spl lambda/ = 6 /spl mu/m with a thick electroplated Au top contact layer is reported for different cavity lengths. For a 3-mm-long laser, the CW optical output powers of 381 mW at 293 K and 22 mW at maximum operating temperature of 333 K (60/spl deg/C) are achieved with threshold current densities of 1.93 and 3.09 kA/cm/sup 2/, respectively. At 298 K, the same cavity gives a maximum wall plug efficiency of 3.17% at 1.07 A. An even higher CW optical output power of 424 mW at 293 K is obtained for a 4-mm-long laser and the device also operates up to 332 K with an output power of 14 mW. Thermal resistance is also analyzed at threshold as a function of cavity length.  相似文献   

6.
We demonstrate a single-frequency continuously tunable three-section distributed Bragg reflector laser operating at a center wavelength of /spl lambda//sub 0/=1.548 /spl mu/m using a fully integratable asymmetric twin-waveguide structure. A low-loss tapered mode transformer couples the light between the active waveguide, or gain region, and the passive ridge waveguide where the phase and grating tuning sections are located. The device has a threshold current of 50 mA and output power of nearly 13 mW, with a slope efficiency of 0.12 W/A and a tuning range of 4.8 nm under pulsed operation. An independent phase section is used to continuously tune the wavelength, thus avoiding mode hops. Using a delayed self-heterodyne technique, we determine the linewidth to be (146/spl plusmn/2) kHz.  相似文献   

7.
We present a substantial improvement in the CW performance of GaAs-based quantum cascade lasers with operation up to 150 K. This has been achieved through suitable changes in device processing of a well-characterized laser. The technology optimizes the current injection in the laser by reducing the size of the active stripe whilst maintaining a strong coupling of the optical mode to preserve low current densities. The reduction of total dissipated power is critical for these lasers to operate CW. At 77 K, the maximum CW optical power is 80 mW, threshold current is 470 mA, slope efficiency is 141 mW/A, and lasing wavelength /spl lambda//spl sim/10.3 /spl mu/m.  相似文献   

8.
V-grooved inner stripe (VIS) GaAs-AlGaAs quantum-wire (QWR) lasers were successfully fabricated by, combining two-step metalorganic chemical vapor deposition (MOCVD) growth with a wet-etching technique. In order to achieve low threshold current density and high reliability, a conductive stripe width (W), a thickness (t/sub p-CBL/), and a doping concentration (n/sub p-CBL/) of the p-GaAs current-blocking layer (CBL) were determined to be W=1.2 /spl mu/m, t/sub p-CBL/=2 /spl mu/m, and n/sub p-CBL/=1/spl times/10/sup 18/ cm/sup -3/. The leakage currents passing through the CBL were also estimated using a modified P-SPICE. Thus far, a threshold current of 45 mA and an output power of 4 mW at 51 mA have been achieved under room-temperature pulsed operation for some devices with uncoated facets.  相似文献   

9.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

10.
Continuous-wave (CW) as well as pulsed-laser emission from a midinfrared (/spl lambda/=7.92 /spl mu/m) IV-VI vertical-cavity surface-emitting laser at 1.8 K is presented. The high-finesse microcavity, containing PbSe as an active medium, was optically pumped with a carbon monoxide laser at a wavelength of 5.28 /spl mu/m (1894 cm/sup -1/) in either CW or Q-switched mode. The maximum achieved CW power was 4.8 mW and pulsed peak powers were up to 23 W. Linewidths are considerably narrower than 0.10 cm/sup -1/, corresponding to 0.6 nm.  相似文献   

11.
Self-organized InAs quantum-dot (QD) lasers emitting at 1.5 /spl mu/m were grown by gas source molecular beam epitaxy on (100) InP substrates. Room temperature continuous-wave (CW) operation of QD-based buried ridge stripe lasers is reported. We investigated experimentally the relevant CW performances of as-cleaved InP-based QD lasers for telecom applications such as temperature properties (T/sub 0/=56 K), infinite length threshold current density (J/sub /spl infin///spl sim/150 A/cm/sup 2/ per QDs layer) and internal efficiency (0.37 W/A). Lasing in pulsed mode is observed for cavity length as short as 200 /spl mu/m with a threshold current of about 37 mA, demonstrating the high gain of the QD's active core. In addition, the Henry parameter of these InP-based QD lasers is experimentally determined using the Hakki-Paoli method (/spl alpha//sub H//spl sim/2.2).  相似文献   

12.
We report continuous-wave (CW) operation of quantum-cascade lasers (/spl lambda/=6 /spl mu/m) up to a temperature of 313 K (40/spl deg/C). The maximum CW optical output powers range from 212 mW at 288 K to 22 mW at 313 K and are achieved with threshold current densities of 2.21 and 3.11 kA/cm/sup 2/, respectively, for a high-reflectivity-coated 12-/spl mu/m-wide and 2-mm-long laser. At room temperature (298 K), the power output is 145 mW at 0.87 A, corresponding to a power conversion efficiency of 1.68%. The maximum CW operating temperature of double-channel ridge waveguide lasers mounted epilayer-up on copper heatsinks is analyzed in terms of the ridge width, which is varied between 12 and 40 /spl mu/m. A clear trend of improved performance is observed as the ridge narrows.  相似文献   

13.
Distributed-feedback (DFB) buried-heterostructure (BH) lasers with quantum-well active region emitting at 2.0 /spl mu/m have been fabricated and characterized. The lasers with four wells showed performance of practical use: threshold current as low as 15 mA for 600-/spl mu/m-long devices and CW single-mode output up to 5 mW at 2.03 /spl mu/m under operation current of 100 mA were observed. The current- and temperature-tuning rates of DFB mode wavelength are 0.004 nm/mA and 0.125 nm/K, respectively.  相似文献   

14.
Continuous-wave operation of terahertz quantum-cascade lasers   总被引:1,自引:0,他引:1  
We report continuous-wave (CW) operation of a 4.4-THz quantum-cascade laser grown in the GaAs-AlGaAs materials system by molecular beam epitaxy. The device operates at 4 K with a threshold current of 160 mA, and an output power of /spl sim/25 /spl mu/W. In pulsed mode, the maximum operating temperature is 52 K, with a threshold current of 108 mA at 4 K. CW lasing was achieved by using a small cavity ridge area (60/spl times/600 /spl mu/m), and by coating one of the laser facets. These two features allowed for a substantial decrease of the threshold current and therefore reduced detrimental heating effects. The role played by the lateral resistance of the 800-nm GaAs layer underneath the active region was also investigated. Experimental data is presented showing that the temperature of the active region, which eventually hinders CW lasing, can be substantially influenced by the value of this lateral resistance.  相似文献   

15.
Stripe-width and cavity length dependencies of high-temperature performances of 1.3-/spl mu/m InGaAsP-InP well-designed buried-heterostructure strained multiquantum-well (MQW) lasers were investigated. The threshold currents as low as 4.5/10.5 mA and slope efficiencies as high as 0.48/0.42 mW/mA at 25/spl deg/C/85/spl deg/C were obtained in the MQW lasers with 1.5-/spl mu/m width, 250-/spl mu/m length, and 0.3/0.85 facet reflectivity. With temperature increasing from 25/spl deg/C to 85/spl deg/C, the MQW lasers exhibited lower output power degradation, the minimum value was 1.78 dB at an operation current of 45 mA. The MQW lasers were suitable for application in optical access networks.  相似文献   

16.
Narrow-stripe 1.55-/spl mu/m wavelength distributed reflector lasers consisting of both distributed Bragg reflectors and vertical grating of the first Bragg order were fabricated. A low threshold current I/sub th/ of 2.8 mA, a differential quantum efficiency /spl eta//sub d/ of 28% from the front facet, and a submode suppression ratio of 44 dB were obtained for structures with a stripe width of 1.3 /spl mu/m and a cavity length of 150 /spl mu/m.  相似文献   

17.
AlGaN-GaN HEMTs on Si with power density performance of 1.9 W/mm at 10 GHz   总被引:1,自引:0,他引:1  
AlGaN-GaN high electron mobility transistors (HEMTs) on silicon substrate are fabricated. The device with a gate length of 0.3-/spl mu/m and a total gate periphery of 300 /spl mu/m, exhibits a maximum drain current density of 925 mA/mm at V/sub GS/=0 V and V/sub DS/=5 V with an extrinsic transconductance (g/sub m/) of about 250 mS/mm. At 10 GHz, an output power density of 1.9 W/mm associated to a power-added efficiency of 18% and a linear gain of 16 dB are achieved at a drain bias of 30 V. To our knowledge, these power results represent the highest output power density ever reported at this frequency on GaN HEMT grown on silicon substrates.  相似文献   

18.
Separate confinement buried heterostructure (SCBH) tunable PbEuSeTe-PbTe diode lasers were fabricated by molecular beam epitaxy for the first time. Continuous wave (CW) operating temperature of 215 K was realized, which is the highest CW operating temperature ever reported for lead-chalcogenide diode lasers. Preliminary results show a significant improvement in threshold current and emission power. Exceptionally low threshold currents of 2.5 mA at 120 K, 76 mA at 180 K, and 252 mA at 200 K were measured. The temperature tuning range of the SCBH diode laser spans between 6.49 /spl mu/m at 20 K to 4.19 /spl mu/m at 215 K.  相似文献   

19.
The first 1.55 /spl mu/m room-temperature continuous-wave (CW) operation of GaAs-based laser diodes utilising GaInNAsSb/GaNAs double quantum well active regions grown by molecular beam epitaxy is reported. In electrically-pumped CW operation the narrow ridge waveguide devices have a room temperature lasing wavelength of 1550 nm near threshold, increasing to 1553 nm at thermal rollover. The CW threshold current was 132 mA for a 3/spl times/589 /spl mu/m device, with a characteristic temperature of 83 K, measured in pulsed mode between 20 and 70/spl deg/C.  相似文献   

20.
In this paper, results are reported showing response enhancement in GaAs-AlGaAs IR detectors using a doped substrate to increase reflection, enhancing the resonant cavity effect. Responsivity for heterojunction interfacial workfunction detectors grown on semi-insulating (SI) and doped substrates are compared. For a device grown on an SI substrate, a 9-/spl mu/m resonance peak had a response of 1.5 mA/W while a similar device on an n-doped substrate showed 12 mA/W. Also, the difference between response under forward and reverse bias (3 versus 12 mA/W) for the sample grown on the doped substrate, as well as calculated results confirm that the increased response is due to the resonant enhancement. An optimized design for a 15-/spl mu/m peak (24 /spl mu/m 0 response threshold) detector grown on a doped substrate could expect a peak response of 4 A/W with a 50% quantum efficiency and D/sup */ /spl sim/ 2 /spl times/ 10/sup 10/ Jones at the background limited temperature of 50 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号