首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycarbosilane (PCS) was used as a precursor to prepare porous silicon carbide (SiC) ceramics with in situ growth of β-SiC nanowires. The pore size of the as-prepared porous ceramics was 1.37 μm in average, and had a narrow distribution. The nanowires with diameters ranging from ∼10 to 50 nm existed in the channels of the porous body. Their morphology, microstructure, and composition were characterized by field emission scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy, which confirmed that the nanowires had a single-crystal β-SiC structure with the 〈111〉 growth direction. A vapor–liquid–solid process was discussed as a possible growth mechanism of the β-SiC nanowires.  相似文献   

2.
The microstructural evolution of pressureless sintered silicon nitride ceramics prepared from different particle sizes of β-Si3N4 as starting powders, has been investigated. When the specimen prepared from as-received β-powder of 0.66 μm in average size, was sintered at 1850°C, equiaxed β-Si3N4 grains were observed. As the size of the initial β-powder went down to 0.26 μm, however, the growth of elongated grains was enhanced, which resulted in a whisker-like microstructure similar to that made from α-starting powder. When the sintering temperature was increased to 2000°C, the elongated grains were also developed even in the specimen made from 0.66 μm β-powder. The observed results were discussed with relation to the two dimensional nucleation and growth theory for faceted crystals. In addition, fracture toughness of the specimen consisting of elongated grains, which was prepared from finer powders, increased.  相似文献   

3.
β-Sialon powder was synthesized by the simultaneous reduction and nitridation of Hadong kaolin at 1350°C in an N2–H2 atmosphere, using graphite as a reducing agent. The average particle size of β-sialon powder was about 4.5 μm. The synthesized β-sialon powder was pressureless sintered from 1450° to 1850°C under a N2 atmosphere. The relative density, modulus of rupture, fracture toughness, and microhardness of β-sialon ceramics sintered at 1800°C for 1 h were 92%, 248 MPa, 2.8 MN/m3/2, and 13.3 GN/m2, respectively. The critical temperature difference (ΔTc) in water-quench thermal-shock behavior was about 375°C for the synthesized β-sialon ceramics.  相似文献   

4.
Fine-grained (<1 μm) silicon carbide ceramics with high strength were obtained by using ultrafine (∼90 nm) β-SiC starting powders and a seeding technique for microstructural control. The microstructures of the as-hot-pressed and annealed ceramics without α-SiC seeds consisted of fine, uniform, and equiaxed grains. In contrast, the annealed material with seeds had a uniform, anisotropic microstructure consisting of elongated grains, owing to the overgrowth of β-phase on α-seeds. The strength, the Weibull modulus, and the fracture toughness of fine-grained SiC ceramics increased with increasing grain size up to ∼1 μm. Such results suggested that a small amount of grain growth in the fine grained region (<1 μm) was beneficial for mechanical properties. The flexural strength and the fracture toughness of the annealed seeded materials were 835 MPa and 4.3 MPa·m1/2, respectively.  相似文献   

5.
Single-phase lead lanthanum zirconate titanate (PLZT) solid solution powder was synthesized from the constituent oxides at ambient temperature through a mechanical alloying (MA) process and was then densified to fine-grained ceramics by sintering and hot-pressing. The anomalous photovoltaic effect (APV) and photoinduced strain of the resultant PLZT ceramics were investigated and analyzed in association with the influence of grain size. It was found that a photoinduced voltage up to 6000 V·cm−1 can be obtained as the grain size is reduced to 0.42 μm. This is extremely high and about three times that achievable in normal micrometer-grained PLZT ceramics. The maximum photoinduced strain of the PLZT ceramics with an average grain diameter of 0.54 μm reached 0.01%, which is equivalent to electric-field-induced strain of common piezoelectric materials.  相似文献   

6.
Biomorphous β-SiC ceramics were produced at 1400°C from pine wood impregnated with silica. This one-step carbothermal reduction process decreases the cost of manufacturing of SiC ceramics compared with siliconization of carbonized wood in silicon vapor. The synthesized sample exhibits a 14 m2/g surface area and has a hybrid pore structure with large 5–20 μm tubular macropores and small (<50 nm) slit-shaped mesopores. SiC whiskers of 20–400 nm in diameter and 5–20 μm in length formed within the tubular pores. These whiskers are expected to improve the filtration by removing dust particles that could otherwise penetrate through large pores. After ultrasonic milling, the powdered sample showed an average particle size of ∼30 nm. The SiC nanopowder produced in this process may be used for manufacturing SiC ceramics for structural, tribological, and other applications.  相似文献   

7.
Microstructure Development in Low-Antimony Oxide-Doped Zinc Oxide Ceramics   总被引:1,自引:0,他引:1  
The grain growth of ZnO ceramics sintered with low additions of Sb2O3 (<500 ppm of Sb) was investigated. Additions of Sb<250 ppm resulted in a coarse-grained microstructure with large ZnO grains (55–70 μm), much larger than the grain size of ZnO ceramics without any Sb2O3 addition (45 μm). The addition of 500 ppm of Sb resulted in a fine-grained microstructure with an average ZnO grain size of about 12 μm. The results are explained by an inversion-boundary (IB) -induced grain-growth mechanism. The grain-growth exponent has a value of about 2 as long as the grains containing IBs grow at the expense of IB-free grains. It increases to about 4 after the IB-containing grains impinge on each other, and achieves values above 10 for additions of 500 ppm of Sb when IBs nucleate in nearly all the ZnO grains so that grains with IBs prevail in the microstructure at an early stage in the grain-growth process.  相似文献   

8.
Dense PbTiO3 ceramics consisting of submicrometer-sized grains were prepared using the spark-plasma-sintering (SPS) method. Hydrothermally prepared PbTiO3 (0.1 μm) was used as a starting powder. The powder was densified to ≳98% of the theoretical X-ray density by the SPS process. The average grain size of the spark-plasma-sintered ceramics (SPS ceramics) was ≲1 μm, even after sintering at 900°–1100°C, because of the short sintering period (1–3 min). The measured permittivity of the SPS ceramics showed almost no frequency dependence over the range 101–106 Hz, mainly because pores were absent from the ceramics. The coercive field of the SPS ceramics was somewhat higher than that of conventionally sintered ceramics, which could be attributed to the small-grained microstructures of the SPS ceramics.  相似文献   

9.
Commercial β-SiAlON ceramics were joined using mixed Si3N4, Y2O3, Al2O3, and SiO2 powders. At a joining temperature of 1600°C and a hold time in excess of 10 min, the adhesive was converted to an approximate 60:40 vol% composite of β-SiAlON–glass-ceramic. The grain size of the acicular β-SiAlON grains precipitated in the joint (submicrometer diameter, average aspect ratio of 10) was significantly smaller than those in the adherend ceramic (1–5 μm diameter). Intergrowth of β-SiAlON grains at the joint interface resulted in high bond strengths. The chemistry and microstructure of the ceramic adhesives used are described.  相似文献   

10.
Dense, fine-grained silicon carbide (SiC) ceramics were fabricated by a hot-pressing technique using pyrolyzed polycarbosilane powders. Hot-isostatic pressing treatments were also applied to some of these hot-pressed samples. The grainsize range of the obtained sintered bodies was from 0.2 to 1.4 μm, which was much finer than that of ordinary sintered SiC ceramics. Relationships among sintering conditions, microstructures, and fracture toughness of the obtained ceramics were investigated. A clear grain-size dependence of fracture toughness was observed in this very fine-grain region (0.2 to 1.4 μm). Fracture toughness showed its maximum (5.1 MPa.m1/2) at the average grain size of ∼0.7 μm. Also, the fracture toughness of the samples having similar grain sizes increased with increasing relative density.  相似文献   

11.
Monazite-type CePO4 powder (average grain size 0.3 μm) was dry-pressed to disks or bars. The green compacts began to sinter above 950°C. Relative density ≧ 99% and apparent porosity <1% were achieved when the specimens were sintered at 1500°C for 1 h in air. The linear thermal expansion coefficient and thermal conductivity of the CePO4 ceramics were 9 × 10−6/°C to 11 × 10−6/°C (200° to 1300°C) and 1.81 W/(m · K) (500°C), respectively. Bending strength of the ceramics (average grain size 4 μm) was 174 ± 28 MPa (room temperature). The CePO4 ceramics were cracked or decomposed by acidic or alkaline aqueous solutions at high temperatures.  相似文献   

12.
The microstructure of a pressureless sintered (1605°C, 90 min) O'+β' SiAlON ceramic with CeO2 doping has been investigated. It is duplex in nature, consisting of very large, slablike elongated O' grains (20–30 μm long), and a continuous matrix of small rodlike β' grains (< 1.0 μm in length). Many α-Si3N4 inclusions (0.1–0.5 μm in size) were found in the large O' grains. CeO2-doping and its high doping level as well as the high Al2O3 concentration were thought to be the main reasons for accelerating the reaction between the α-Si3N4 and the Si-Al-O-N liquid to precipitate O'–SiAlON. This caused the supergrowth of O' grains. The rapid growth of O' crystals isolated the remnant α–Si3N4 from the reacting liquid, resulting in a delay in the α→β-Si3N4 transformation. The large O' grains and the α-Si3N4 inclusions have a pronounced effect on the strength degradation of O'+β' ceramics.  相似文献   

13.
Porous alumina ceramics with unidirectionally aligned continuous pores were fabricated via the slurry coating of fugitive fiber. Cotton thread was coated with ceramic slurry by pulling it through the slurry, and specimens were produced by spooling the coated thread. The obtained porous alumina ceramics had an average pore diameter of 165 μm, 35% open porosity, and a bending strength of 160 MPa. It was suggested that the pore size and the porosity could be adjusted using the diameter of the cotton thread and the solids concentration of the slurry, respectively.  相似文献   

14.
The effect of leucite particle size on the friction behavior of dental ceramics was investigated using a ball-on-disc tribometer. The experimental loads were 20, 30 and 40 N and the tests were conducted unlubricated and under the lubrication of an artificial-saliva. Dental ceramics with different leucite particle sizes, i.e. 0.5±0.2, 1.2±0.3 and 5±2 μm, were prepared by sintering the mixture of a low temperature frit and leucite powders with different average particle sizes (0.4, 1 and 5 μm). The results showed that the leucite particle size, experimental load and lubrication media had not significant effects on the steady-state friction coefficient of the samples. However, the evolution of the friction coefficient was different, which could be generally classified into two categories, i.e. with and without an abrupt increase in the friction curve. The changes in experimental condition and leucite particle size were attributed to such difference.  相似文献   

15.
BaTiO3 ceramics with grain sizes from 0.6 to 60 μm and relative densities of 89% to 92% were prepared by hot forging and conventional sintering from very pure-oxalate-derived powder. The aging of both the dielectric constant and the dielectric loss was examined at weak and strong fields with respect to grain size and frequency. It was concluded that the main aging mechanism is the aging of hysteretic domain wall motion for coarse-grained ceramics. At grain size of less than 1 μm, the lack of frequency and E AC dependence, along with a lower aging rate, suggests that domain motions or hysteretic domain wall motions are restricted in finegrained ceramic BaTiO3 and contribute little to the aging.  相似文献   

16.
Porous silicon carbide (SiC) ceramics were fabricated by an oxidation-bonding process in which the powder compacts are heated in air so that SiC particles are bonded to each other by oxidation-derived SiO2 glass. Because of the crystallization of amorphous SiO2 glass into cristobalite during sintering, the fracture strength of oxidation-bonded SiC ceramics can be retained to a relatively high level at elevated temperatures. It has been shown that the mechanical strength is strongly affected by particle size. When 0.6 μm SiC powders were used, a high strength of 185 MPa was achieved at a porosity of ∼31%. Moreover, oxidation-bonded SiC ceramics were observed to exhibit an excellent oxidation resistance.  相似文献   

17.
Lead zirconate titanate (PZT) thick films in the thickness range of 5–200 μm on 20 μm copper and 25 μm platinum foils were prepared by electrophoretic deposition (EPD) for application as embedded passive components. The EPD process was conducted in glacial acetic acid medium, and the effects of deposition parameters, such as dc voltage values, processing times, and suspension aging on the film thickness and composition stoichiometry were evaluated. The dependence of the film thickness on the current and aging of the suspension was established and correlated to the chemical modifications occurring in the suspension. Films sintered at 1150°C for 30 min exhibited uniform and dense microstructures with an average grain size of 1.5 μm. A dielectric permittivity of around ∼1330 and loss tangent of 0.05 were measured for films with 8 μm of thickness. The films showed remanent polarization and a maximum polarization value of 24 and 38 μC/cm2, respectively. These properties, comparable with those of bulk PZT ceramics, suggested potential applications of the EPD process for the deposition of ferroelectric thick films on metal foils for embedded component applications.  相似文献   

18.
The effect of solids loading, particle-size distribution, and suspension viscosity on the resultant microstructure of slipcast monolithic ceramics prepared from aqueous suspensions of alumina and silicon carbide was studied. Unimodal alumina suspensions (average particle size = 0.6 μm) were prepared at 35, 37, and 42 vol%. Silicon carbide suspensions (average particle size = 0.7 μm) were produced with different quantities of dispersant at 37 vol%. Similarly, aqueous alumina suspensions of 42 and 50 vol% were produced with a bimodal particle-size distribution. The slip-cast microstructures were characterized by mercury porosimetry and small-angle neutron scattering, which provided pore size (distribution), pore fraction, and pore morphology. Essentially, the combination of these techniques deciphered packing differences obtained in the cake microstructures. For the alumina cakes produced from the 35,37, and 42 vol% suspensions, the individual characterization techniques, mercury intrusion, and the neutron scattering measurements showed that the cake microstructures were similar in pore size and quantity. However, comparison of the techniques and their assumptions showed differences in the pore shape. Mercury porosimetry and neutron scattering showed bimodal porosity for the cake produced from a mixture of 85% 6-μm particles and 15% 0.6-μm particles. Pore volume fraction and pore size increases were correlated with increased viscosity in the silicon carbide suspensions. In addition, the silicon carbide cake microstructures were measured, and homogeneity was evaluated as a function of position in the cast.  相似文献   

19.
Submicrometer-sized, pure calcium hydroxyapatite (HA, (Ca10(PO4)6(OH)2)) and β-tricalcium phosphate (β-TCP, Ca3(PO4)2) bioceramic powders, that have been synthesized via chemical precipitation techniques, were used in the preparation of aqueous slurries that contained methyl cellulose to manufacture porous (70%–95% porosity) HA or β-TCP ceramics. The pore sizes in HA bioceramics of this study were 200–400 μm, whereas those of β-TCP bioceramics were 100–300 μm. The pore morphology and total porosity of the HA and β-TCP samples were investigated via scanning electron microscopy, water absorption, and computerized tomography.  相似文献   

20.
A novel process for fabricating lightweight, cellular ceramics from sols is presented. The process utilizes the rapid viscosity change during gelation to stabilize the structure of a foamed silica sol. Manipulation of gel viscosity and foaming agent concentration resulted in a minimum cell size of 90 μm at 31% density and minimum density of 17% with average cell size of 400 μm. The flexural strength compared favorably with space shuttle tiles and sintered hollow glass spheres. From −50° to 150°C, the dielectric constant ranged from 1.51 to 1.55 for a 20% dense foam and was slightly dispersive, whereas the dielectric loss was comparable with fused silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号