首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Tyk2 belongs to the Janus kinase (JAK) family of receptor associated tyrosine kinases, characterized by a large N-terminal region, a kinase-like domain and a tyrosine kinase domain. It was previously shown that Tyk2 contributes to interferon-alpha (IFN-alpha) signaling not only catalytically, but also as an essential intracellular component of the receptor complex, being required for high affinity binding of IFN-alpha. For this function the tyrosine kinase domain was found to be dispensable. Here, it is shown that mutant cells lacking Tyk2 have significantly reduced IFN-alpha receptor 1 (IFNAR1) protein level, whereas the mRNA level is unaltered. Expression of the N-terminal region of Tyk2 in these cells reconstituted wild-type IFNAR1 level, but did not restore the binding activity of the receptor. Studies of mutant Tyk2 forms deleted at the N terminus indicated that the integrity of the N-terminal region is required to sustain IFNAR1. These studies also showed that the N-terminal region does not directly modulate the basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation and for rendering the enzyme activatable by IFN-alpha. Overall, these results indicate that distinct Tyk2 domains provide different functions to the receptor complex: the N-terminal region sustains IFNAR1 level, whereas the kinase-like domain provides a function toward high affinity ligand binding.  相似文献   

2.
Interferon-alpha (IFN-alpha)-mediated intracellular signaling is initiated by ligand-induced receptor dimerization, tyrosine phosphorylation of the Tyk2 and Jak1 tyrosine kinases, and subsequent phosphorylation of the Stat1 and Stat2 proteins. The IFN-alpha receptor consists of at least two distinct subunits. One subunit, IFNAR1, has low affinity binding for interferon yet is required for signal transduction. We introduced mutations in the cytoplasmic domain of human IFNAR1 in order to identify residues involved in the mediation of biological responses. We took advantage of the species specificity of the interferon receptors by analyzing human IFN-alpha-induced major histocompatibility complex class I antigen expression in mouse L929 cells stably transfected with mutant human receptors. The membrane proximal 60-amino acids were insufficient to signal a biological response even though within these residues Tyk2 and Stat2 binding sites have been identified. IFN-alpha-induced receptor tyrosine phosphorylation was not critical for signaling because mutation of Tyr residues to Phe did not prevent the biological response to IFN-alpha. The deletion of a 16-amino acid region highly homologous between species created a receptor which signals an enhanced response. Tyrosine dephosphorylation is a component of this enhanced response as mutation of the Tyr residues within this region to Phe resulted in a receptor with increased sensitivity to IFN. The known signaling molecules that interact with IFNAR1 are positive regulators of IFN-alpha function. The presence of this domain in the COOH-terminal region suggests that the receptor may interact with signaling molecules that negatively regulate interferon responses.  相似文献   

3.
4.
5.
6.
We have reported JAK-signaling modulators, CIS1 (cytokine-inducible SH2 protein-1), CIS3 and JAB (JAK2 binding protein), which are structurally related. In M1 myeloid leukemia cells, CIS3 was induced by neither interleukin 6 (IL6) nor interferon gamma (IFNgamma), while JAB was induced strongly by IFNgamma and slightly by IL6 and leukemia inhibitory factor (ILF). Forced expression of CIS3 and JAB in M1 cells prevented IL6- or LIF-induced growth arrest and differentiation, even when their expression levels were comparable to endogenous ones in several cell lines such as HEL, UT-7, IFNgamma-treated M1, and CTLL2 cells. Pretreatment of parental M1 cells with IFNgamma but not IFNbeta resulted in suppression of LIF-induced STAT3 activation and differentiation, further supporting that physiological level of JAB is sufficient to inhibit LIF-signaling. However, unlike JAB, CIS3 did not inhibit IFNgamma-induced growth arrest, suggesting a difference in cytokine specificity between CIS3 and JAB. CIS3 inhibited STAT3 activation with slower kinetics than JAB and allowed rapid c-fos induction and partial FcgammaRI expression in response to IL6. In 293 cells, CIS3 as well as JAB bound to JAK2 tyrosine kinase domain (JH1), and inhibited its kinase activity, however, the effect of CIS3 on tyrosine kinase activity was weaker than that of JAB, indicating that CIS3 possesses lower affinity to JAK kinases than JAB. These findings suggest that CIS3 is a weaker inhibitor than JAB against JAK signaling, and JAB and CIS3 possess different regulatory roles in cytokine signaling.  相似文献   

7.
Interferon-gamma (IFNgamma) transmits its signal through a specific cell surface receptor (IFNgammaR), which consists of a primary ligand binding alpha-chain (IFNgammaR alpha) and a signaling beta-chain (IFNgammaR beta). Recent studies identified the cytokines IFNgamma, interleukin-6 (IL-6), IL-1alpha, and tumor necrosis factor-alpha in testicular cells. Therefore, we: 1) examined the expression of IFNgammaR alpha and IFNgammaR beta subunits in freshly isolated and purified rat testicular cells; 2) examined the differential regulation of receptor components by cytokines using primary cultures of Sertoli cells; 3) identified the cell signaling pathway components of testicular IFNgammaR; and 4) characterized the functional role of testicular IFNgamma using primary Sertoli cells. We demonstrated the messenger RNAs for both chains of IFNgammaR in rat testicular cells using Northern hybridization analysis. Western blot analysis and immunocytochemistry showed that both specific IFNgammaR protein subunits were present in cultured primary Leydig and Sertoli cells prepared from the testes of immature rats. The expression of both IFNgammaR component messenger RNAs in cultured Sertoli cells was increased by its specific ligand (IFNgamma), as well as IL-1alpha and tumor necrosis factor-alpha, in both a time- and dose-dependent manner. IFNgamma-activation of the Janus (JAK) tyrosine kinases, JAK1 and JAK2 proteins, indicate that IFNgammaR, expressed in the Sertoli cell, is functional. Moreover, IFNgamma modulates the expression of interferon regulatory factor (IRF)-1 and IL-1beta converting enzyme genes in Sertoli cells. Thus, our data are suggestive of a role(s) for IFN-gamma in the regulation of distinct gene expression and cell-specific sensitivity to apoptosis in the testis.  相似文献   

8.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates the growth and function of several myeloid cell types at different stages of maturation. The effects of GM-CSF are mediated through a high affinity receptor that is composed of two chains: a unique, ligand-specific alpha chain and a beta common chain (beta c) that is also a component of the receptors for interleukin 3 (IL-3) and IL-5. Beta c plays an essential role in the transduction of extra cellular signals to the nucleus through its recruitment of secondary messengers. Several downstream signaling events induced by GM-CSF stimulation have been described, including activation of tyrosine kinases and tyrosine phosphorylation of cellular proteins (including beta c) and activation of the Ras/mitogen-activated protein kinase and the JAK/STAT pathways. A region within the beta c cytoplasmic tail (amino acids 517-763) has been reported to be necessary for tyrosine phosphorylation of the adapter protein, Shc, and for the subsequent GM-CSF-induced activation of Ras. In this paper, we describe a physical association between the tyrosine phosphorylated GM-CSF receptor (GMR)-beta c chain and Shc in vivo. Using a series of cytoplasmic truncation mutants of beta c and various mutant Shc proteins, we demonstrate that the N-terminal phosphotyrosine-binding (PTB) domain of Shc binds to a short region of beta c (amino acids 549-656) that contains Tyr577. Addition of a specific phosphopeptide encoding amino acids surrounding this tyrosine inhibited the interaction between beta c and shc. Moreover, mutation of a key residue within the phosphotyrosine binding pocket of the Shc-PTB domain abrogated its association with beta c. These observations provide an explanation for the previously described requirement for Tyr577 of beta c for GM-CSF-induced tyrosine phosphorylation of Shc and have implications for Ras activation through the GM-CSF, IL-3, and IL-5 receptors.  相似文献   

9.
The high-affinity receptor (R) for IL-5 consists of a unique alpha chain (IL-5R alpha) and a beta chain (beta c) that is shared with the receptors for IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF). We defined two regions of IL-5R alpha for the IL-5-induced proliferative response, the expression of nuclear proto-oncogenes, and the tyrosine phosphorylation of cellular proteins including beta c, SH2/SH3-containing proteins and JAK2 kinase. In the studies described here, we demonstrate that IL-5, IL-3 or GM-CSF stimulation induces the tyrosine phosphorylation of JAK2, and to a lesser extent JAK1, and of STAT5. Mutational analysis revealed that one of the proline residues, particularly Pro352 and Pro355, in the membrane-proximal proline-rich sequence (Pro352-Pro353-X-Pro355) of the cytoplasmic domain of IL-5R alpha is required for cell proliferation, and for both JAK1 and JAK2 activation. In addition, transfectants expressing chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c responded to IL-5 for proliferation and tyrosine phosphorylation of JAK1. Intriguingly, electrophoretic mobility shift assay analysis revealed that STAT5 was activated in cells showing either JAK1 or JAK2 tyrosine phosphorylation. These results indicate that activation of JAK1, JAK2 and STAT5 is critical to coupling IL-5-induced tyrosine phosphorylation and ultimately mitogenesis, and that Pro352 and Pro355 in the proline-rich sequence appear to play more essential roles in cell growth and in both JAK1/STAT5 and JAK2/STAT5 activation than Pro353 does.  相似文献   

10.
11.
B lymphocytes express several members of the integrin family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. In addition to beta1 integrins, predominantly alpha4 beta1, mature B cells also express alpha4 beta7, which is a receptor for vascular cell adhesion molecule-1 and fibronectin, and is also involved in the homing of B cells to mucosal sites through binding to a third ligand, mucosal address in cell adhesion molecule-1. Here we describe that crosslinking of alpha4 beta7 integrins on B cell lines and normal tonsillar B cells, induces tyrosine phosphorylation of multiple substrates of 105-130 kD, indicating that beta7 integrin plays a role as signaling molecule in B cells. This pattern of phosphorylated proteins was very similar to that induced following ligation of alpha4 beta1. Interestingly, ligation of alpha5 beta1 or alpha6 beta1 also stimulated the 105-125 kD group of phosphorylated proteins, whereas ligation of beta2 integrins did not. The focal adhesion tyrosine kinase p125FAK was identified as one of these substrates. Beta1 or beta7 mediated tyrosine phosphorylations were markedly decreased when the microfilament assembly was inhibited by cytochalasin B. These results suggest that intracellular signals initiated by different integrins in B cells may converge, to similar cytoskeleton-dependent tyrosine phosphorylated proteins.  相似文献   

12.
13.
We studied the phosphorylation of the alpha and beta subunits of the Type I interferon (IFN) receptor induced by Type I IFNs in the human U-266 and MOLT-4 cell lines. Both IFN-alpha and IFN-beta induced tyrosine phosphorylation of the beta subunit of the receptor. The Type I IFN-induced tyrosine phosphorylation of the beta subunit was rapid and transient, being detectable within 1 min of Type I IFN treatment and gradually diminishing to almost base-line levels by 60 min. All Type I IFNs studied were found to induce tyrosine phosphorylation of the alpha subunit of the Type I IFN receptor, the p135tyk2 and JAK-1 tyrosine kinases, and the ISGF3 alpha components. Interestingly, IFN-beta, but not IFN-alpha or IFN-omega, induced tyrosine phosphorylation of an alpha subunit-associated protein with an apparent molecular mass of approximately 100 kDa (p100). These data suggest the existence of a common signaling pathway(s) for Type I IFNs involving the alpha and beta subunits of the receptor, the tyrosine kinases p135tyk2 and JAK-1, and the ISGF3 alpha components. However, differences between the signaling pathways of different Type I IFNs exist, as suggested by tyrosine phosphorylation of an alpha subunit-associated protein only in response to IFN-beta.  相似文献   

14.
Interferon (IFN)-gamma and IFN-alpha/beta induction of the transporter associated with antigen processing-1 (TAP1) promoter was compared in HeLa cells and endothelial cells (ECs). In HeLa cells, IFN-gamma acts through Stat1alpha/Stat1alpha homodimers binding to the gamma activating sequence (GAS) and IFN-alpha/beta acts through Stat1/Stat2/p48 binding to the IFN-stimulated response element (ISRE). In ECs, however, IFN-gamma and IFN-alpha/beta act through both the GAS and ISRE. The basis of the IFN signaling crossover in ECs was investigated. HeLa and ECs contain similar ratios of Stat1alpha to Stat2 proteins, and IFN-alpha/beta also activates the same Janus kinases (JAKs) (Jak1 and tyrosine kinase (Tyk) 2 but not Jak2). However, IFN-alpha/beta activates more Stat1alpha than does IFN-gamma in ECs, whereas the reverse occurs in HeLa, and expression of the IFN-alpha/beta receptor-associated phosphatase SHP-1 is much lower in ECs than HeLa cells. Overexpression of SHP-1 in ECs blocks IFN-alpha/beta signaling through GAS, and expression of a dominan negative SHP-1 in HeLa cells permits IFN-alpha/ss signaling through GAS, demonstrating a role for SHP-1 in regulating crossovers between the IFN-alpha/beta and IFN-gamma signaling pathways.  相似文献   

15.
16.
17.
18.
Leptin receptors include a long form (OBRl) with 302 cytoplasmic residues that is presumed to mediate most or all of leptins signaling, and several short forms, including one (OBRs) that has 34 cytoplasmic residues, is widely expressed, and is presumed not to signal but to mediate transport or clearance of leptin. We studied the abilities of these two receptor isoforms to mediate signaling in transfected cells. In response to leptin, OBRl, but not OBRs, underwent tyrosine phosphorylation that was enhanced by co-expression with JAK2. In cells expressing receptors and JAK2, both OBRs and OBRl mediated leptin-dependent tyrosine phosphorylation of JAK2, and this was abolished with OBRs when the Box 1 motif was mutated. In cells expressing receptors, JAK2 and IRS-1, leptin induced tyrosine phosphorylation of IRS-1 through OBRs and OBRl. In COS cells expressing hemagglutinin-ERK1 and receptors, leptin increased ERK1 kinase activity through OBRl, with the magnitude increased by co-expression of JAK1 or JAK2, and to a lesser degree through OBRs, despite greater receptor expression. In stable Chinese hamster ovary cell lines expressing OBRs or OBRl, leptin stimulated endogenous ERK2 phosphorylation. Whereas leptin stimulated tyrosine phosphorylation of hemagglutinin-STAT3 and induction of a c-fos luciferase reporter plasmid through OBRl, OBRs was without effect in these assays. In conclusion, OBRl is capable of signaling to IRS-1 and mitogen-activated protein kinase via JAK, in addition to activating STAT pathways. Although substantially weaker than OBRl, OBRs is capable of mediating signal transduction via JAK, but these activities are of as yet unknown significance for leptin biology in vivo.  相似文献   

19.
20.
Growth hormone (GH) signaling requires activation of the GH receptor (GHR)-associated tyrosine kinase, JAK2. JAK2 activation by GH is believed to facilitate initiation of various pathways including the Ras, mitogen-activated protein kinase, STAT, insulin receptor substrate (IRS), and phosphatidylinositol 3-kinase systems. In the present study, we explore the biochemical and functional involvement of the Src homology 2 (SH2)-containing protein-tyrosine phosphatase, SHP-2, in GH signaling. GH stimulation of murine NIH 3T3-F442A fibroblasts, cells that homologously express GHRs, resulted in tyrosine phosphorylation of SHP-2. As assessed specifically by anti-SHP-2 coimmunoprecipitation and by affinity precipitation with a glutathione S-transferase fusion protein incorporating the SH2 domains of SHP-2, GH induced formation of a complex of tyrosine phosphoproteins including SHP-2, GHR, JAK2, and a glycoprotein with properties consistent with being a SIRP-alpha-like molecule. A reciprocal binding assay using IM-9 cells as a source of SHP-1 and SHP-2 revealed specific association of SHP-2 (but not SHP-1) with a glutathione S-transferase fusion incorporating GHR cytoplasmic domain residues 485-620, but only if the fusion was first rendered tyrosine-phosphorylated. GH-dependent tyrosine phosphorylation of SHP-2 was also observed in murine 32D cells (which lack IRS-1 and -2) stably transfected with the GHR. Further, GH-dependent anti-SHP-2 coimmunoprecipitation of the Grb2 adapter protein was detected in both 3T3-F442A and 32D-rGHR cells, indicating that biochemical involvement of SHP-2 in GH signaling may not require IRS-1 or -2. Finally, GH-induced transactivation of a c-Fos enhancer-driven luciferase reporter in GHR- and JAK2-transfected COS-7 cells was significantly reduced when a catalytically inactive SHP-2 mutant (but not wild-type SHP-2) was coexpressed; in contrast, expression of a catalytically inactive SHP-1 mutant allowed modestly enhanced GH-induced transactivation of the reporter in comparison with that found with expression of wild-type SHP-1. Collectively, these biochemical and functional data imply a positive role for SHP-2 in GH signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号