首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 5 毫秒
1.
2.
BACKGROUND: The objective of the present work is to report an efficient pre‐treatment process for sunflower oil biodiesel raw glycerol (SOB‐RG) and its fermentation to 1,3‐propanediol. RESULTS: The growth inhibition percentages of Clostridium butyricum DSM 5431 on grade A (pH 4.0) and grade B (pH 5.0) phosphoric acid‐treated SOB‐RG were similar to those of pure glycerol at 20 g glycerol L?1; i.e., 18.5 ± 0.707% to 20.5 ± 0.7% inhibition. In grade A, growth inhibition was reduced from 85.25 ± 0.35% to 32 ± 1.4% (a 53.25% reduction) at 40 g glycerol L?1 by washing grade A raw glycerol twice with n‐hexanol (grade A‐2). The kinetic parameters for product formation and substrate consumption in anaerobic batch cultures gave almost similar values at 20 g glycerol L?1, while at 50 g glycerol L?1 volumetric productivity (Qp) and specific rate of 1,3‐propanediol formation (qp) were improved from 1.13 to 1.85 g L?1 h?1 and 1.60 to 2.65 g g?1 h?1, respectively, by employing grade A‐2 raw glycerol, while the yields were similar (0.5–0.52 g g?1). CONCLUSION: The results are important as the pre‐treatment of SOB‐RG is necessary to develop bioprocess technologies for conversion of SOB‐RG to 1,3‐propanediol. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
BACKGROUND: The performance of a three‐stage process for polyhydroxyalkanoate (PHA) bioproduction from olive oil mill effluents (OME) has been investigated. In the first anaerobic stage OME were fermented in a packed bed biofilm reactor into volatile fatty acids (VFAs). This VFA‐rich effluent was fed to the second stage, operated in an aerobic sequencing batch reactor (SBR), to enrich mixed cultures able to store PHAs. Finally, the storage response of the selected consortia was exploited in the third aerobic stage, operated in batch conditions. RESULTS: The anaerobic stage increased the VFA percentage in the OME from 18% to ~32% of the overall chemical oxygen demand (COD). A biomass with high storage response was successfully enriched in the SBR fed with the fermented OME at an organic load rate of 8.5 gCOD L?1 d?1, with maximum storage rate and yield (146 mgCOD gCOD?1 h?1 and 0.36 COD COD?1, respectively) very similar to those obtained with a synthetic VFA mixture. By means of denaturing gradient gel electrophoresis (DGGE) analysis, different bacterial strains were identified during the two SBR runs: Lampropedia hyalina and Candidatus Meganema perideroedes, with the synthetic feed or the fermented OMEs, respectively. In the third stage, operated at increasing loads, the maximum concentration of the PHA produced increased linearly with the substrate fed. Moreover, about half of the stored PHAs were produced from substrates other than VFAs, mostly alcohols. CONCLUSION: The results obtained indicate that the process is effective for simultaneous treatment of OME and their valorization as a renewable resource for PHA production. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
5.
BACKGROUND: In Bacillus subtilis KCC103 α‐amylase is hyper‐produced and not catabolite repressed by glucose. Various sugars, raw starches and nitrogen sources were tested for their repression effect on α‐amylase synthesis. Enhancement of α‐amylase production by supplementing micronutrients and surfactants was studied. Using optimized medium, process parameters were optimized for improved α‐amylase production. RESULTS: α‐Amylase was produced from KCC103 utilizing simple sugars indicating the absence of catabolite repression. Raw potato and yeast extract were best carbon and nitrogen sources for α‐amylase production. α‐Amylase synthesis was enhanced by micronutrients cysteine, thiamine, Mg2+ and SDS. Maximum α‐amylase (394 IU mL?1) was produced in the optimized medium consisting of (in g L?1) raw potato (30.0), yeast extract (20.0), cysteine (0.3), thiamine (0.2), SDS (0.2) and MgSO4 (0.5 mmol L?1) at 36–48 h under optimal conditions (pH 7.0, 37 °C, 200 rpm). The α‐amylase production was further enhanced to 537.7 IU mL?1 with shorter time (15–18 h) in a bioreactor with optimized agitation rate of 700 rpm at 30% dissolved oxygen. CONCLUSION: Since there was no carbon catabolite repression of α‐amylase synthesis, sugar mixture from various agro‐residues hydrolysates could be utilized for α‐amylase production. The study showed the feasibility of utilization of raw potato for α‐amylase production from the KCC103, which would lead to a significant reduction in process cost. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号