首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The sintering and dissolution process (SDP) was used to produce the fine open cell Al–Al2O3 composite and pure Al foams with the relative density of 0·25–0·40 and the pore size of 112–400 μm. The composite foam exhibited much higher yield strength and Young's modulus than the pure Al foam, and thus had an elevated plateau stress. Moreover, the composite foam showed a unique dependence of the compression stress on the pore size, i.e. it increased with increasing pore size, which was quite different from that for the common metal foams.  相似文献   

2.
Intermetallic (Ni–Al) foams were fabricated by combustion reactions. The heats of formations of these intermetallics were high enough to obtain bulk reaction products and pores were formed in the specimen during the combustion reaction. Some processing parameters of the combustion reaction were varied to control porosity and cell morphology of the intermetallic foams. The amount of aluminum in the green compact was an important factor in controlling the porosity of the synthesized nickel aluminide. The relative density of the green compact needed to be more than 0.72 for effective foam formation. The enthalpy change of the combustion reaction was controlled either by adding a reaction‐ enhancing agent (B4C) or by adding a heat‐absorbing agent (TiC). Both the porosity and the cell size of the synthesized intermetallics were successfully controlled by changing the reaction enthalpy (from 10 to 85 % porosity).  相似文献   

3.
Al–Si (355.0) alloy foam has been produced by Alporas method (in which foam alloy melts, and titanium hydride is used as a blowing agent). Mechanical behavior such as quasi-static compression (strain–stress curves, energy absorption capacity), also the effects of thermal properties on the macroscopic structure of the produced foam were investigated. In addition, the effect of energy absorption capacity on percentage porosity has also been studied. The research shows that the produced foam with an average cell size and proper distribution has a more mechanical stability compared to the foams with no such characteristics. It was found that yield strength tends to increase from 12.51 MPa for porosity 74.0% to 22.32 MPa for porosity 54.0%. This foam has also been compared with other foams such as Al-pure foam and Mg foam. It can be stated that Al–Si (355.0) foam has a higher yield strength in comparison to Al-pure foam and Mg foam.  相似文献   

4.
The aim of this work is to study the effects of laser additive manufacturing on microstructure and mechanical properties of foam Al–12?wt-%Si aluminium alloy with/without TiH2 foaming agent. The results showed that low porosity closed foam Al–12Si was successfully obtained. The effect of processing parameters on the porosity is discussed. The porosity was changed from initial 20.9% without foaming agent to 32.3 and 45.9% with 5 and 10% addition of foaming agent, respectively. Average micro-hardness values of the obtain foam Al–Si alloy is varied from 100 to 130?HV and the shape of compressive stress–strain curve is as the same as foam aluminium made by powder metallurgy and casting methods.  相似文献   

5.
Ceramic foams with different relative densities (i.e., different extension ratios) were successfully prepared from stone powder sludge (SPS) via a foaming and gelcasting method. Ceramic foams with various relative densities were characterized in terms of porosity, specific surface area, and water absorption capacity. The porosity of the ceramic foams ranged from 35% to 78%, depending on the extension ratio. The specific surface area and water absorption capacity increased as the relative density decreased (i.e., increasing extension ratio), resulting in enhanced pore connectivity. The feasibility of the SPS foams as microorganism-immobilized carriers and the effect of inner pores on simultaneous nitrification/denitrification were tested through wastewater treatment experiments. The results from fixed-bed reactors packed by SPS carriers with different relative densities revealed that the organic removal efficiency for all reactors was greater than 90%. In addition, the nitrification/denitrification experimental results suggested that the increase of the NH4+-N loading rate resulted in the improvement of nitrification efficiency and the decrease of nitrogen loss in all reactors. However, no significant correlation between relative density (i.e., extent of inner pore development) and nitrification/denitrification efficiency was found.  相似文献   

6.
This paper presents a study of the mechanical behavior of aluminum foam–polyurethane interpenetrating phase composites (AF–PU composites) with different corresponding porosity and pore size under cyclic compressions. The dissipated energy of AF–PU composite is described by the area of the compression cycle. Cyclic frequency, strain amplitude, temperature aging and cycle numbers were taken as reacting influence parameters to evaluate the damping capacity of AF–PU composites with different corresponding porosity and pore size. These cyclic tests demonstrate that AF–PU composites can make up the disadvantage of pure aluminum foams (AF) that are not suffered by the recoverable deformation in the stage of plastic plateau, and AF–PU composites with high porosity and large pore size have a good potential applied in hysteretic damping devices for seismic resistant structures under the condition of large strain level and preloading several cycles.  相似文献   

7.
This article describes a new process to manufacture open-cell steel foams. Calcium chloride anhydrous is used as a space holder. By changing the values of the main manufacturing parameters such as volume percentage, and the size and shape of the space holder, we produce different steel foam samples which cover a wide range of solid fraction, pore size, and shape. The effects of space-holder content and sintering condition such as temperature and time on the porosity of steel foam samples are discussed. The microstructure and composition of steel foam samples are observed and analyzed by scanning electron microscope and X-ray diffraction. The compressive curves of steel foams are measured by a universal testing machine. The experiment results show the compressive strength of steel foam samples with porosities between 65% and 85% is in the range of 66.4 ~ 12.9 MPa. The compressive strength depends mainly on the porosity and pore shape. The absorbed energy per unit volume (W) of steel foams with porosities between 85% and 65% is in range of 6.8 ~ 31.2 MJ/m3. Under the condition of identical porosity, the absorbed energy per unit volume (W) of steel foam is about three times of aluminum foam. In compression, steel foam specimens show heterogeneous macroscopic deformation.  相似文献   

8.
选用蛋清蛋白作为发泡剂, 采用蛋白发泡法制备了高孔隙率的泡沫氮化硅陶瓷. 设计了三种不同固化工艺: 常压固化、恒压固化和高压固化, 固化气压依次升高, 研究了固化气压对泡沫陶瓷开孔率、孔隙形貌和孔径分布的影响. 其中, 恒压固化制品的平均孔径和开孔率最高, 分别为210 μm和78.6%, 且孔径分布比较均匀, 常压固化次之, 高压固化制品开孔率和平均孔径最低. 常压和恒压固化制品为椭球形孔洞, 有一定的排列取向, 而高压固化制品多为规则的球形孔. 随着固化气压的升高, 制品孔壁厚度增加, 高压固化制品的孔壁厚度最高, 其压缩强度接近50 MPa.  相似文献   

9.
The foaming behavior of SiC-particulate (SiCp) aluminum composite powder compacts containing titanium hydride blowing agent was investigated by heating to 750°C in a pre-heated furnace. Aluminum powder compacts were also prepared and foamed using similar compaction and foaming parameters in order to determine the effect of SiCp-addition on the foaming and compression behavior. The SiCp-addition (10 wt%) was found to increase the linear expansion of the Al powder compacts presumably by increasing the surface as well as the bulk viscosities. The compression tests conducted on Al and 10 and 20% SiCp foams further showed a more brittle compression behavior of SiCp/Al foams as compared with Al foams. The collapse stresses of Al and 10% SiCp/Al foams were also predicted using the equations developed for the open and closed cell foams. Predictions have shown that Al foam samples behaved similar to open cell foams, while 10% SiCp/Al foam collapse stress values were found between those of open and closed cell foams, biasing towards those of the open cell foams.  相似文献   

10.
We describe a powder metallurgical space holder method to produce open-cell metallic foams. By changing the values of the main manufacturing parameters such as volume percentage and the particle size of the space holder agent, we produce different copper foam samples which cover a wide range of solid fraction, pore size and cell wall thickness. All the specimens were synthesized based on a series of designed experiments. We demonstrate how the foams’ density, cell size and specific surface area can be accurately controlled using two easily adjustable manufacturing parameters. The three-dimensional structure of these foams was investigated using X-ray micro tomography. The image quality is sufficient to measure local structure and connectivity of the foamed material, and the field of view large enough to calculate material properties. By combining the finite element method with the tomographic images, we calculate the mechanical response of the foams. We show that the foams’ bulk and shear moduli are strongly correlated to their cell size, cell wall thickness and specific surface area. These parameters can be easily controlled during manufacturing.  相似文献   

11.
Abstract

Damping behaviours of the open cell microcellular pure Al foams fabricated by sintering and dissolution process with the relative density of 0·31–0·42 and the pore size of 112–325 μm were investigated. The damping characterisation was conducted on a multifunction internal friction apparatus. The internal friction (IF) was measured at frequencies of 1·0, 3·0 and 6·0 Hz over the temperature range of 298–725 K. The measured IF shows that the open cell pure Al foam has a damping capacity that is enhanced in comparison with pure Al. At a lower temperature (~400 K), the IF of the open cell pure Al foams increases with decreasing relative density, with decreasing pore size and with increasing frequency. The IF peak was found at the temperature range of 433–593 K in the IF curves. It is clear that the IF peak is relaxational type and the activation energy associated with the IF peak is about 1·60 ± 0·02 eV. Defect effects can be used to interpret the damping mechanisms.  相似文献   

12.
张新铭  陈丹阳  王花 《材料导报》2017,31(21):135-138
多孔金属材料作为新型功能材料具有密度低、强度高、导热性能优良等特性,应用前景广阔,受到越来越多的关注。多孔材料的有效导热系数与随机孔隙结构相关,仅用孔隙率不足以描述真实材料的孔隙结构。采用二维Voronoi模型,定义孔隙随机度S和孔隙率ε作为孔隙结构参数,通过调节核点位置偏移因子α和边宽系数β改变模型的随机度S和孔隙率ε,分析随机度S和孔隙率ε对相对有效导热系数k*的影响。结果表明,随机度和孔隙率同时影响多孔泡沫材料的有效导热系数,当随机度S一定时,随着孔隙率ε增大,材料的有效导热系数k*减小;当孔隙率ε一定时,随着随机度S的增大,有效导热系数k*减小。根据大样本的有限元数值模拟结果,拟合了有效导热系数由孔隙率和随机度组成的函数表达式。  相似文献   

13.
Closed cell aluminum foams have been used in various disciplines of engineering. Aluminum foams provide high strength with the advantage of low weight. In the current research, CaCO3 is used as a foaming agent for producing closed-cell aluminum foams. For the fabrication of homogenous foam, optimization of process parameters was done. The effect of SiC as a thickening agent on structural property of foams viz. density and porosity have been inspected. Foams with density 0.40–0.86 g/cm3 were produced. The produced foams were studied under axial compression tests for evaluating mechanical properties. It can be inferred from the results that by adding 3 wt.% CaCO3, the uniform viscosity of melt was achieved and a homogeneous foam structure is achieved with optimum porosity. Also, 5 wt.% addition of CaCO3 in melt and stirring speed at 1400 rpm tend to increase porosity and decrease cell wall thickness. The optimum values for thickening agent SiC, foaming agent CaCO3 at stirring speed 1400 rpm were found out to be 15 wt.%, 3 wt.%. The effect of relative density, the addition of thickening and foaming agent is studied.  相似文献   

14.
High-quality magnesium foams were fabricated by an infiltration technology using tailor-made salt–flour mixture space holders. The pore structures and mechanical properties of space holder particles as well as the resultant foam production with spherical pores were characterized in the present study. The particles after high-temperature sintering dissolved rapidly in water due to their porous structures, guaranteeing the weak corrosion and high-purity of magnesium foams. The spherical pores foams exhibited usual stress–strain behaviors and nearly isotropic properties. The yield strengths of the foams increased with the decrease of sample porosity, and the relative mechanical properties of foams were mostly dependent on their relative densities, which obeyed a power law relation. Moreover, porous magnesium materials with tunable pore structures could be fabricated owing to the flexible forming features of salt–flour mixture, showing great application prospects in bone implant material field.  相似文献   

15.
球形孔通孔和闭孔泡沫铝合金的超声衰减性能   总被引:3,自引:0,他引:3  
研究了球形孔通孔和闭孔泡沫铝合金在1 MHz~10 MHz的超声衰减性能.结果表明:泡沫铝合金的超声衰减性能决定于其孔结构;通孔泡沫铝合金的超声衰减系数α随着孔径d的减小、孔隙率Ps减小和比表面积Sv的增加而增大;闭孔泡沫铝合金的超声衰减系数α随孔径d的减小、孔隙率Ps的增加和比表面积Sv的增加而增大;当孔径d、孔隙率Ps相近时,闭孔泡沫铝合金的超声衰减性能优于通孔泡沫铝合金;在1 MHz~10 MHz二者是具有良好阻尼性能的轻质材料.其衰减机制为在弹性范围内超声应力波在具有大量孔隙界面的泡沫铝合金中的衰减.  相似文献   

16.
雷鸿  张新铭  王济平 《材料导报》2018,32(6):1010-1014, 1025
实际生产生活中使用到的多孔泡沫材料通常都是非均质的,文章建立了多孔泡沫材料均质与非均质模型,结合场协同理论,从速度与温度梯度矢量的协同关系出发,分析了多孔泡沫材料内部单相流体对流强化换热的物理机制,研究了孔隙率、孔密度以及空气流速对流体顺流方向协同性能的影响。研究表明:场协同原理适用于分析多孔泡沫材料的强化传热机制;多孔泡沫材料孔隙中心与骨架后缘处的协同程度最好,骨架侧缘协同程度最差(协同角接近90°);非均质多孔泡沫材料孔壁附近协同程度较差,相同条件下全场平均场协同角比均质泡沫大;多孔泡沫材料越均匀全场协同情况越好,在相同流速、孔隙率和孔密度下,均质泡沫材料全场平均协同角余弦值可达非均质泡沫的1.2倍。计算结果表明,空气流速为3m/s时,孔隙率为0.8、0.85和0.9的多孔泡沫材料强化传热强度分别是普通平直翅片的3.3倍、1.9倍和1.2倍。该研究对新型散热器设计具有指导意义。  相似文献   

17.
The effect of microstructure on the permeability of metallic foams   总被引:1,自引:0,他引:1  
Pressure drop was measured across complex and simple structure metallic foams at different velocity ranges using air as working fluid. Darcian and non-Darcian permeability parameters, K and C, were determined by fitting experimental data with widely accepted quadratic model of Hazen-Dupuit-Darcy. Generally, the experimental results are in good agreement with the model. The differences in K and C values between the two types of metallic foams are due to the different microstructure. For the simple structure specimens, permeability K increased whereas non-Darcian permeability C decreased with increasing pore diameter. The effect of pore size on the permeability of complex structure metallic foams seems to be opposite to that observed with the simple structure specimens and to results reported by other researchers on other porous medium. This discrepancy mainly stems from the differences in window concentration in addition to some heterogeneity in the foam that impeded the gas flow on one side of the specimens. The difference in pressure drop observed in the different metallic foams is due to combined effect of K and C. However, for simple structure foams, K and C could be predicted by Ergun-like model using appropriate values for the empirical constants. The permeability K is significantly affected by pore size and porosity. The quadratic term of Hazen-Dupuit-Darcy equation is mainly due to the inertia of the flow and partially to the drag exerted by the microstructure of the metallic foam. For both foams, as the porosity increases, pressure drop decreases and permeability, K, increases. The introduction of the open cross sectional area term enabled better understanding of the permeability of metallic foams with intricate morphologies.  相似文献   

18.
复合磷酸盐多孔生物陶瓷的制备及体外细胞相容性   总被引:3,自引:0,他引:3  
以Al2O3-MgO-P2O5磷酸盐为粘结剂, 采用有机泡沫浸渍工艺制备了多孔陶瓷, 采用扫描电镜(SEM)、X射线衍射(XRD)、排水法和压缩实验等表征了多孔陶瓷的孔隙形貌、相组成、孔隙率和力学性能, 并通过体外细胞实验研究了其细胞相容性. 结果表明, Al2O3-MgO-P2O5磷酸盐的加入不仅可以使浆料能够均匀地涂覆在泡沫体上, 也促进了陶瓷的烧结. 得到的多孔陶瓷具有相互连通、分布均匀的孔隙结构(大孔孔径在100~500μm, 还有约为3μm微孔), 平均孔隙率为85.9%±1.6%, 平均压缩强度为(1.04±0.15)MPa; 多孔陶瓷虽然是一种由HA、β-Ca2P2O7和少量含Mg、Al的物相组成的复合磷酸盐陶瓷, 但在体外实验中没有表现出明显的细胞毒性, 并能促进细胞快速增殖与分化, 表明该多孔陶瓷具有良好的细胞亲和性和相容性.  相似文献   

19.
Cellular silica with improved framework, crosslinking, and stability properties are desirable for applications in thermal insulation. A process for the preparation of cellular silica foam with interconnected cells with tailored porosity and pore size distribution has been attempted. The silica foams have been prepared through two different methods; surfactant- and particle-based stabilization. The silica foams prepared through two different processes namely surfactant-stabilized foams (SSF) and particle-stabilized foams (PSF) have exhibited a wide range of differences in their structure which in turn have shown to affect the final properties of the foam. The cell size distributions in SSF (89 vol% porosity) and PSF (85 vol% porosity) have been found in the range of 50–250 μm (monomodal) and 4–10 μm and 50–100 μm (bimodal), respectively, whereas the cell counts of both have been found in close proximity. The microstructure of both the sintered SSF as well as PSF samples foams have shown an open and interconnected porosity with the permeability of both in the region of ~10−8 m2. The mechanical (compressive) strength and Young’s modulus of the PSF are a third of that in SSF. The structure–property relationship of both the SSF and PSF and their comparison have been discussed.  相似文献   

20.
Nanoporous cellulose foams have been successfully prepared by a procedure in three steps: (i) dissolving in a room temperature ionic liquid (1-butyl-3-methylimidazolium chloride); (ii) coagulation in water; (iii) rapid freeze drying using liquid N2. The results show that the foam had a 3D open fibrillar network structure with the specific surface area as high as 186.0 m2/g and a porosity of 99%. Moreover, the cellulose foam shows cellulose II crystalline structure. Cellulose concentration in hydrogel as well as drying methods influences upon the structure and pore size of cellulose foams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号