首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
采用直流磁控溅射法制备了掺钨氧化铟(IWO)透明导电薄膜。研究了薄膜结构、表面形貌、光学和电学性能与各种制备参数之间的依赖关系。X射线衍射(XRD)谱分析结果表明随着基底温度的升高,薄膜的结晶性得到改善。原子力显微镜(AFM)测试结果表明薄膜颗粒均匀,表面平整。研究发现薄膜的电学性能对制备参数非常敏感。在基板温度为380℃的条件下所制备的样品在可见光区域(400~700 nm)的平均透射率(未扣除基底)均大于80%。获得的IWO薄膜最低电阻率为2.8×10-4 ohm.cm,对应载流子迁移率49 cm2V-1s-1,载流子浓度4.4×1020 cm-3,平均透射率83%。  相似文献   

2.
使用脉冲激光沉积(PLD)技术在Si(100)衬底上沉积钇稳定的氧化锆(YSZ)薄膜,用XRD分析薄膜的结晶取向,SEM和AFM观测薄膜表面形貌,研究了在200-650℃的不同衬底温度下薄膜的择优生长.结果表明:衬底温度较低的YSZ薄膜为非晶组织,衬底温度为300-500℃时YSZ晶粒以表面能低的(111)面首先择优生长,衬底温度超过550℃后晶粒活化能提高而使表面能较高的(100)晶粒择优生长.YSZ薄膜是典型的岛状三维生长模式,较高的衬底温度有利于原子在衬底表面迁移和重排结晶长大.同其它沉积技术相比,用PLD技术能在比较低的衬底温度下在Si(100)表面原位外延生长出较高质量的YSZ薄膜.  相似文献   

3.
利用直流磁控溅射法在室温玻璃衬底上制备出了可见光透过率高、电阻率低的掺锰氧化锌(ZnO:Mn)透明导电薄膜.实验制备的ZnO:Mn为六方纤锌矿结构的多晶薄膜,且具有垂直于衬底方向的c轴择优取向.实验结果表明,靶与衬底之间的距离对ZnO:Mn薄膜的生长速率、残余应力及电学性能有很大影响,而对薄膜的晶粒尺寸和光学性能影响不大.考虑薄膜的电学、光学及力学性能,认为靶与衬底之间的最佳距离为7.0 cm.在此条件下制备的ZnO:Mn薄膜的电阻率达到4.2×10-4 Ω·cm,可见光透过率为86.6%,丽残余应力仅为-0.025 GPa.  相似文献   

4.
利用直流磁控溅射法在室温玻璃衬底上制备出了可见光透过率高、电阻率低的掺锰氧化锌(ZnO∶Mn)透明导电薄膜。实验制备的ZnO∶Mn为六方纤锌矿结构的多晶薄膜,且具有垂直于衬底方向的c轴择优取向。实验结果表明,靶与衬底之间的距离对ZnO∶Mn薄膜的生长速率、残余应力及电学性能有很大影响,而对薄膜的晶粒尺寸和光学性能影响不大。考虑薄膜的电学、光学及力学性能,认为靶与衬底之间的最佳距离为7.0 cm。在此条件下制备的ZnO∶Mn薄膜的电阻率达到4.2×10-4Ω.cm,可见光透过率为86.6%,而残余应力仅为-0.025 GPa。  相似文献   

5.
工作气压对室温溅射柔性AZO薄膜性能的影响   总被引:1,自引:0,他引:1  
采用射频磁控溅射法在PEN衬底上室温制备了AZO薄膜,并对不同工作气压下(0.05~0.4Pa)沉积薄膜的结构及光电性能进行了研究。结果表明,薄膜具有良好的c轴择优取向,随工作气压增大,薄膜(002)峰强度减弱,晶粒减小,表面粗糙度增大,电学性能下降,薄膜可见光透过率变化不大,但禁带宽度变窄。与玻璃衬底相比,PEN衬底上沉积的AZO薄膜拥有更高的品质因数,获得的最佳电阻率、载流子浓度和霍尔迁移率分别为1.11×10-3Ω.cm、4.14×1020cm-3和13.60cm2/(V.s),该薄膜可见光的绝对透射率达到95.7%。  相似文献   

6.
采用热丝化学气相沉积法(HWCVD),在很近的热丝与衬底距离(5 mm)下沉积多晶硅薄膜,研究了热丝温度、SiH4浓度对多晶硅晶粒取向和晶粒尺寸的影响规律。结果表明:当热丝温度在1400℃~1800℃变化,衬底温度225℃~320℃时,沉积出多晶硅薄膜的择优取向随温度升高的变化规律是(111)→(220)→(111);在低的灯丝温度(≈1450℃)和低的衬底温度(≈235℃)条件下,获得了晶粒横向尺寸大于1μm、垂直尺寸大于5μm的均匀致密的多晶硅薄膜。  相似文献   

7.
InAs作为III-V族化合物半导体材料,可以应用于磁阻和霍尔元器件、量子点激光器元件、太阳能电池和红外探测器元件等方面,具有广泛的研究和应用前景.本文以Si(211)为衬底,采用热壁外延(hot wall epitaxy,HWE)技术制备了InAs薄膜,研究热循环退火(thermal cycle annealing,TCA)次数对InAs/Si(211)薄膜结构及电学性能的影响.热壁外延制备InAs薄膜的衬底温度为400℃,生长时间为4 h,不同的热循环退火次数为2、4、6、8、10.X射线衍射(XRD)测试表明:利用HWE技术在Si(211)衬底表面成功制备了闪锌矿结构的InAs薄膜,且沿(111)取向择优生长;TCA能够明显增强Si(211)衬底表面生长的InAs薄膜的择优取向.扫描电子显微镜(SEM)及原子力显微镜(AFM)测试分析表明:随着TCA次数增加到6次,InAs/Si(211)薄膜表面由于晶粒细化作用变得均匀平整,表面粗糙度从69.63 nm降低到56.43 nm,此时霍尔迁移率达到2.67×10~3cm~2/(V·s);过多的退火次数(≥8次)又会使薄膜表面的晶粒过大、缺陷增多,导致薄膜性能下降.  相似文献   

8.
采用固相反应法合成具有焦绿石立方结构的Bi1.5ZnNb1.5O7(BZN)陶瓷靶材,采用脉冲激光沉积法在Pt/SiO2/Si(100)基片制备立方BZN薄膜。研究了随衬底温度的变化,薄膜的结晶性能,微观形貌以及介电性能的差异。结果表明当衬底温度在550~650℃时,薄膜具有纯的立方BZN结构,并且在600℃时薄膜的晶粒发育比较完整,此时薄膜具有较高的介电常数和较低的损耗。  相似文献   

9.
利用射频磁控溅射法,采用氧化锌铝(98%ZnO+2%Al2O3)为靶材,在普通载玻片上制备了ZAO(ZnO∶Al)薄膜,研究了溅射功率及溅射气压对薄膜晶体结构、电学和光学性能的影响.采用X射线衍射仪、场扫描电镜对薄膜的结构及表面形貌进行了分析,采用分光光度计和电阻率测试仪对薄膜的光电学性能进行了测试.结果表明,当溅射功率为120W、衬底温度为300℃、工作气压为0.5Pa时制得的薄膜具有良好的光电学性能,可见光平均透过率为88.21%,电阻率为8.28×10-4Ω·cm.  相似文献   

10.
室温下采用射频(RF)磁控溅射在玻璃衬底上制备镓铝共掺杂氧化锌(GAZO)薄膜。采用X射线衍射仪、紫外-可见-近红外分光光度计、四探针测试仪和紫外光电子能谱等表征方法研究射频功率和工作压强与薄膜结构、光学和电学性能之间的关联。结果表明:不同条件下制备的GAZO薄膜均具有六方纤锌矿晶体结构,沿垂直衬底的(002)方向择优取向,在可见光波段(400~700 nm)的平均透射率均高于90%;在射频功率和工作压强分别为200 W和0.20 Pa条件下制备的GAZO薄膜具有最低的电阻率(1.40×10~(-3)Ω·cm)和最高的品质因子(8.10×10~(-3)Ω~(-1))。GAZO薄膜优良的光电性能使其有很大潜力作为透明电极应用于光电器件。  相似文献   

11.
在石英玻璃衬底上,通过溶胶-凝胶旋涂法制备得到钠铝(Na-Al)共掺氧化锌(ZnO)薄膜(NAZO)。研究不同NaAl共掺杂浓度对ZnO薄膜的结晶性、微观结构、光电性能的影响。结果表明:所有NAZO薄膜样品都沿c轴择优取向生长;适当的Na-Al共掺浓度,可以提高ZnO薄膜结晶性,提高薄膜的载流子迁移率;同时还可以观察到NAZO薄膜表面生长出六角柱状结构晶粒。随着Na-Al元素掺杂浓度的改变,所获薄膜的最高平均光学透过率达到95%。由于元素间固溶比的不同,适当的浓度可以提高Na-Al元素的掺杂效率和薄膜内部的载流子浓度,降低薄膜电阻率,NAZO薄膜最低电阻率为4.7×10-2Ω·cm。  相似文献   

12.
孙兆奇  蔡琪  吕建国  宋学萍 《功能材料》2006,37(8):1246-1248
用直流磁控溅射在室温Si基片和载玻片上制备了厚度为7.6~81.3nm超薄Au膜,用X射线衍射及数字电桥对薄膜的微结构和电学性质进行了测试分析.微结构分析表明:制备的超薄Au膜仍为面心立方多晶结构;在膜厚d<46.3nm时,(111)晶粒平均晶粒尺寸随膜厚增加逐渐增大,当d>46.3nm后,晶粒尺寸几乎保持不变,甚至有所减小;(220)晶粒的平均晶粒尺寸则总是随膜厚的增加而增大.薄膜晶格常数均比PDF标准值(0.4078nm)稍小,随膜厚增加,薄膜晶格常数由0.4045nm增大到0.4077nm.电阻率分析结果表明,随着膜厚的增加,薄膜的电阻率经历了岛状膜的极大-网状膜的急剧减小-连续膜的缓慢减小.膜厚d>46.3nm后,由于薄膜中长出新的(111)小晶粒,电阻率略有增加.  相似文献   

13.
采用射频磁控溅射技术在玻璃衬底上制备钛镓合掺氧化锌(TGZO)半导体薄膜,通过XRD、XPS、四探针和透射光谱等方法测试表征,研究了衬底温度对薄膜微观结构、晶粒生长和光电综合性能的影响。结果表明:TGZO薄膜具有高度的c轴择优取向生长特性,其微观结构和光电性能与衬底温度密切相关。当衬底温度为340℃时,TGZO薄膜具有最大的织构系数(2.963)、最大的晶粒尺寸(85.7nm)、最小的微应变(0.231)、最低的电阻率(1.87×10-3Ω·cm)、最高的可见光区平均透射率(84.8%)和最大的品质因数(451.2Ω-1·cm-1)。其晶体质量和光电综合性能最佳。  相似文献   

14.
采用双靶共溅射法,分别在不同衬底温度、沉积压强和溅射功率下制备了Cd1-xZnxTe多晶薄膜样品,并采用X射线衍射仪、X射线荧光光谱仪、扫描电子显微镜等方法对制备的Cd1-xZnxTe薄膜的结构、成分、形貌和光电学性质进行测试分析。结果表明,300℃衬底温度下制备的Cd1-xZnxTe薄膜成分单一,立方相结构,生长致密,表面颗粒平均大小约50nm,Cd1-xZnxTe薄膜在(111)晶面的2θ值及晶格常数与Zn组分呈线性关系。Cd1-xZnxTe薄膜的禁带宽度与组分x值呈线性关系。随着气压从8Pa降低至1Pa,Cd1-xZnxTe薄膜的晶粒尺寸增加,生长更加致密。Cd1-xZnxTe薄膜的室温电导率约为8.61×10-11(Ω·cm)-1,呈弱P型。  相似文献   

15.
利用射频磁控溅射ZnO:Al(3wt%)陶瓷靶材制备ZAO薄膜,利用X射线衍射仪和霍尔测试仪分析了不同衬底温度和工作压强对薄膜结构和电学性能的影响.结果表明,随工作压强的降低,薄膜(002)优先取向增强,迁移率逐渐增大,当工作压强为0.2 Pa、衬底温度为200℃时,薄膜的电阻率为1.4×10-3Ω·cm.  相似文献   

16.
利用射频磁控溅射技术,通过调节溅射功率(P)在200℃、氧氩比为2∶3条件下在玻璃衬底上制备了一系列氧化银(Ag2O)薄膜。利用X射线衍射谱和扫描电子显微镜重点研究了P对Ag2O薄膜微结构的影响。研究结果表明Ag2O薄膜具有(111)择优取向,这可能归结于(111)面的表面自由能最低。随着P从120 W增大到240 W,Ag2O薄膜(111)方向的平均晶粒尺寸从22.92 nm增大到27.96 nm,薄膜的表面结构呈现了从均匀、致密的表面结构向疏松、多孔洞的表面结构的演变。Ag2O(111)衍射峰的2θ角与标准值偏差(2θshift)随P的增大先减小后增大,(111)衍射峰峰位向2θ增大的方向发生了明显的移动。根据量子尺寸效应,薄膜的应力与晶粒尺寸呈反比关系,因此薄膜的应力随P的增大先减小后增大。P=240 W时薄膜的应力最小。从应力的角度,这基本可以合理解释P=210 W时制备的Ag2O薄膜的结晶质量最好,尽管与实验结果有些差异。  相似文献   

17.
采用铝箔作为衬底材料,用溅射Zn薄膜再硫化的两步法制备ZnS薄膜,对薄膜进行XRD、EDS和SEM测试,分析硫化温度对薄膜特性的影响。实验结果表明,硫化温度400℃可确保Zn与S反应生成ZnS,薄膜择优取向为(111)晶面。提高硫化温度可增大(111)衍射峰的强度和晶粒尺寸,即提高ZnS薄膜的结晶度。所制备薄膜的组分接近ZnS化学计量比,且表现出贫Zn和富S特性,说明已发生充分的硫化反应。薄膜表面平滑且无裂纹,由致密排列的晶粒组成。实验结果说明采用硫化法在铝箔衬底上制备ZnS薄膜的可行性。  相似文献   

18.
谌夏  方亮  吴芳  阮海波  魏文猴  黄秋柳 《材料导报》2012,26(10):33-35,57
采用射频磁控溅射技术在石英衬底上制备了掺杂浓度为0.5%(原子分数)的ZnO∶Sn(TZO)薄膜,研究了不同衬底温度下薄膜的结构、形貌、电学和光学的性能.研究发现,TZO薄膜沿着C轴择优生长,在400℃时结晶度最好,最低电阻率为2.619×10-2Ω·cm,在可见光范围内具有较好的透光率.  相似文献   

19.
贺凯  陈诺夫  魏立帅  王从杰  陈吉堃 《材料导报》2018,32(15):2571-2575
为实现在Si衬底上制备GaInP/GaInAs/Ge三结太阳电池,本工作尝试利用磁控溅射和常规退火技术,采用铝诱导结晶(AIC)法在(100)晶面单晶硅衬底上制备Ge薄膜,利用金相显微镜(Metallographic microscopy)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)对其进行表征。分析了铝诱导过程中退火时间和退火温度对Ge薄膜结晶性的影响,发现退火温度越低、时间越长,制备的薄膜质量越好,确定了Ge薄膜晶化的最低退火温度为250℃,并在该温度下成功制备出了晶粒尺寸超过100nm、Ge(111)晶面择优取向度达到99%以上的Ge薄膜。  相似文献   

20.
采用射频磁控溅射法在氧氩比为0.2的混合气氛中,分别在室温、100℃、200℃、250℃、300℃、350℃和400℃温度下,在P-Si(100)衬底上制备了HfO2薄膜,并用SEM、XRD和AFM研究了衬底温度与薄膜沉积速率对微结构的影响.结果表明:随着衬底温度的增加,薄膜沉积速率呈减小趋势.室温沉积的HfO2薄膜为非晶态,当衬底温度高于100℃,薄膜出现单斜晶相,随着衬底温度继续增加,(111)择优取向更加明显,晶粒尺寸增大,薄膜表面粗糙度减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号