首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
This study provides a qualitatively visual observation of the two-phase flow patterns for air-water mixtures inside 6.9, 4.95, and 3 mm smooth diameter tubes with the presence of horizontal return bend. The influence of the return bend on the two-phase flow patterns are investigated. For D=6.9 mm and at a mass flux of 50 kg m−2 s−1 having a quality less than 0.1, no influence on the flow patterns is seen at a larger curvature ratio of 7.1. However, were the curvature ratio reduced to 3, the flow pattern in the recovery region is temporarily turned from stratified flow into annular flow. The temporary flow pattern transition phenomenon from stratified flow to annular flow is not so pronounced with the decrease of tube diameter. It is likely that this phenomenon is related to the influence of surface tension and the reduction of developing length of the swirl flow. Based on the present flow visualization, three flow pattern maps are proposed to describe the effect of return bend on the transition of two-phase flow pattern.  相似文献   

2.
Adiabatic two-phase flow of refrigerant R-134a in a hairpin was studied. The hairpin consists of a smooth tube with an inner diameter of 8 mm and with a bend radius of 11 mm. Because of the forces exerted on the flow in the bend, the flow needs to redevelop downstream of the U-bend. The effects of this phenomenon on the pressure drop are studied and linked to visual observations of the flow. Pressure drop and videos of the flow behaviour are recorded in the straight sections upstream and downstream of the bend. These are then compared to the flow and pressure drop for developed flow. The pressure drop downstream of the bend was consistently higher than that for developed flow. It exceeded the pressure drop for developed flow by an average of 30% for all data points. Each video of the flow behaviour was reduced to a single image by calculating the standard deviation of the time signal of each pixel. The standard deviation profiles were compared in order to quantitatively evaluate the change of the flow behaviour. The flow recovery downstream of the bend stretches out over more than 30 tube diameters.  相似文献   

3.
Lei Liu  Lixin Cheng 《传热工程》2013,34(13):1099-1111
This article presents an experimental study of the effect of polyacrylamide (PAM) on heat transfer and frictional pressure drop behaviors of upward air–water two-phase flow in an inclined smooth circular tube with an upward inclination angle of 8 degrees from the horizontal direction. The test tube has an inside diameter of 40 mm and an outside diameter of 48 mm. A PAM water solution with a concentration of 300 ppm was used in the experiments. The liquid phase superficial velocities are 0.52, 1.02, and 1.46 m/s and the gas-phase superficial velocities are from 1.79 to 6.54 m/s. Heat transfer tests were performed by cooling the air–water flow inside the test tube through its wall using the cooling water with a heat transfer length of 3 m, and two-phase pressure drops were measured over a length of 3.1 m. Results show that the air–water two-phase frictional pressure drops can be reduced from 26.2% to 42.7%, while the two-phase heat transfer coefficients can be reduced from 39.7% to 80.8% with addition of PAM. Furthermore, new proposed physical mechanisms of the two-phase frictional pressure drop and heat transfer reductions are used to explain the experimental results.  相似文献   

4.
In this study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a low global warming potential refrigerant R32 flowing in a horizontal copper circular tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small-diameter tubes or minichannels for air conditioning systems. Axially local heat transfer coefficients were measured in the range of mass fluxes from 30 to 400 kg/(m2·s), qualities from 0.05 to 1.0, and heat fluxes from 2 to 24 kW/m2 at the saturation temperature of 10°C. Pressure drops were also measured in the rage of mass fluxes from 30 to 400 kg/(m2·s) and qualities from 0.05 to 0.9 at the saturation temperature of 10°C under adiabatic condition. In addition, two-phase flow patterns were observed through a sight glass fixed at the tube exit with a digital camera. The characteristics of boiling heat transfer and pressure drop were clarified based on the measurements and the comparison with data of R410A obtained previously. Also, measured heat transfer coefficients were compared with two existing correlations.  相似文献   

5.
This study examines the two-phase slug flow across small diameter tubes with the presence of vertical U-type return bends. The translational velocity of the air slug across return bend usually peaks at an angle of π/2-3π/4. The increase of translational velocity is especially pronounced when flow enters at the lower tube with a smaller curvature ratio. An approximately twofold increase of the slug velocity is observed at a curvature ratio of 3. Dimensionless correlations for flowing upwards and downwards with a mean deviation of 18.7% and 24.5% are proposed that can describe the variation of translational velocity within the return bend.  相似文献   

6.
Brendon L. Keinath 《传热工程》2019,40(9-10):818-829
ABSTRACT

Condensation of high-pressure refrigerants in small-diameter channels over a wide range of reduced pressures approaching the critical point is investigated in this two-part study. In this paper, Part I of the study, a multi-regime pressure drop model for condensing fluids in small-diameter channels is presented. Pressure drop measurements were conducted on condensing R404A in circular channels (inner diameter = 0.508, 1.00, 3.05 mm) over the entire quality range. Saturation temperatures were varied from 30 to 60°C, and mass fluxes from 200 to 800 kg m?2 s?1, to evaluate their effect on pressure drop. The saturation temperatures investigated here correspond to reduced pressures between 0.38 and 0.77. The pressure drop models are developed using a microchannel flow regime map and the void fraction models presented by the authors in previous work. The resulting model predicts 85.5% of the data within ±25%. Part II of the study presents a corresponding heat transfer model.  相似文献   

7.
Experiments of diabatic two-phase pressure drops in flow boiling were conducted in four horizontal flattened smooth copper tubes with two different heights of 2 and 3 mm. The equivalent diameters of the flat tubes are 8.6, 7.17, 6.25, and 5.3 mm. The working fluids are R22 and R410A, respectively. The test conditions are: mass velocities from 150 to 500 kg/m2 s, heat fluxes from 6 to 40 kW/m2 and saturation temperature of 5 °C (reduced pressures pr are 0.12 for R22 and 0.19 for R410A). The experimental results of two-phase pressure drops are presented and analyzed. Furthermore, the predicted two-phase frictional pressure drops by the flow pattern based two-phase pressure drop model of Moreno Quibén and Thome [J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part I: Diabatic and adiabatic experimental study, Int. J. Heat Fluid Flow 28 (2007) 1049–1059; J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model, Int. J. Heat Fluid Flow 28 (2007) 1060–1072] using the equivalent diameters were compared to the experimental data. The model, however, underpredicts the flattened tube two-phase frictional pressure drop data. Therefore, correction to the annular flow friction factor was proposed for the flattened tubes and now the method predicts 83.7% of the flattened tube pressure drop data within ±30%. The model is applicable to the flattened tubes in the test condition range in the present study. Extension of the model to other conditions should be verified with experimental data.  相似文献   

8.
Two-phase flow approaching singularities such as abrupt expansions and sudden contractions is widely encountered in typical industrial and heat exchanging devices. There have been some studies concerning this subject but they mostly are applicable for larger channels. In this study, the first attempt is made to review the existing efforts concerning two-phase flow across sudden expansions/contractions and to examine the applicability of the existing correlations with respect to the recent data in small channels. The second part of this study presents some newly measured pressure drops and observed flow patterns pertaining to some special flow phenomena by expansion/contraction. For an abrupt expansion, it is found that the existing correlations all fail to provide a reasonably predictive capability against the newly collected data. Furthermore, a unique flow pattern called “liquid jet-like flow pattern” occurs at a very low quality region of total mass flux of 100 kg · m?2· s?1, and it raises a setback phenomenon of pressure drop. By contrast, an appreciable increase of pressure difference is seen when the liquid jet-like flow pattern is completely gone. A similar conclusion is drawn for the data of contractions. For the correlations/predictive models, the homogeneous model gives satisfactory prediction for conventional macro-channels but fails to do so when the channels become smaller. This is especially pronounced for a small-diameter tube with a Bond number being less than 1, in which the effect of surface tension dominates.  相似文献   

9.
Two-phase flow phenomena were investigated while boiling R113 and n-pentane in a 241-tube thin slice kettle reboiler. For heat fluxes between 10 and 40 kW/m2, row pressure drop measurements were made in three columns and visual observations of the flow patterns were recorded by a video camera. The height of the two-phase mixture above the tube bundle was also varied. The results revealed that the height of the mixture had little effect on the row pressure drop distribution in each column. At heat fluxes below 10 kW/m2, the pressure drops were reasonably constant. However, at heat fluxes greater than this, the row pressure drop continuously declined.Two one-point-five-dimensional models were developed, one to aid the investigation of static liquid driven lateral flow in the tube bundle, and another to aid the investigation of the cause of the change from reasonably constant to continually declining row pressure drop. The data and the analysis showed that the flow within the tube bundle was always two-dimensional and that the flow pattern was dominated by the static liquid at the tube bundle edge when the heat flux was less than 10 kW/m2. This corresponded to the bubbly flow regime. At larger heat fluxes, the flow pattern changed to intermittent flow. The change occurred when the Kutateladze number was 1.09. Declining row pressure drops occurred in this latter flow regime.  相似文献   

10.
In this study, two new correlations are developed to predict pressure drop for the flow boiling in micro systems with low mass flux. The correlations developed rely on extensive experimental results. Experiments are conducted for flow boiling in nine different silicon multichannel heat sinks with deionized water. In the experiments, mass fluxes of 51–324 kg?m?2?s?1, wall heat fluxes of 36–121.8 kW?m?2, exit vapor qualities of 0.04–0.81, liquid-only Reynolds number of 20.3–89.4, aspect ratios of 0.37–5.00 and hydraulic diameters of 100–250 µm are tested. At first, validation tests for the single phase have been conducted. Then, some of the well-known existing correlations developed for the prediction of two phase pressure drop are used for comparison of the experimental results obtained. Finally, two new empirical correlations are developed for low mass flux conditions. The first one is for frictional pressure drop component, which is obtained by following a general procedure. The second one is for the prediction of total pressure drop (a dimensionless pressure drop correlation). The latter has been shown to predict better with an overall mean absolute error of 14.5% and, 87.8%, 94.8% and 96.5% of the predictions falling within ±30, ±40 and ±50% error bands, respectively.  相似文献   

11.
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m?2 s?1, heat flux from 0 to 55 kW m?2, exit saturation temperatures of 31 and 41°C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m?1 and from 1 to 7 kW m?2 K?1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.  相似文献   

12.
The influence of return bend on the frictional performance of R-410A and R-22 in a 5-mm diameter tube is examined with a curvature ratio of 6.63. The existing single-phase correlations give fairly good agreements with the present single-phase data, but the existing two-phase correlations of the return bend fail to predict the present two-phase data. For test results of the two-phase flow at G?200 kg m−2 s−1, ((dP/dz)c/(dP/dz)s) is approximately equal to 1.8 and is relatively independent of the vapor quality x. However, at a smaller mass flux of 100 kg m−2 s−1, ((dP/dz)c/(dP/dz)s) decreases with x, reaching approximately 5 for x=0.1. The significant increase of this ratio for G increased from 100 to 200 kg m−2 s−1 may be attributed to the change of the two-phase flow pattern.  相似文献   

13.
This study deals with the geometric optimization of a silicon based microchannel heat sink using a combined numerical optimization and constructal theory. The objective is to minimize the wall peak temperature subject to various constraints. The numerical simulations are carried out with fixed volumes ranging from 0.7 mm3 to 0.9 mm3 and pressure drop between 10 kPa to 60 kPa. The effect of pressure drop on the optimized aspect ratio, solid volume fraction, hydraulic diameter, and the minimized peak temperature are reported. Results also show that as the dimensionless pressure drop increases the maximized global thermal conductance also increases.  相似文献   

14.
Experiments were carried out on the flow pattern, heat transfer, and pressure drop of flow boiling of pure CO2 and CO2‐oil mixtures in horizontal smooth and micro‐fin tubes. The smooth tube is a stainless steel tube with an inner diameter of 3.76 mm. The micro‐fin tube is a copper tube with a mean inner diameter of 3.75 mm. The experiments were carried out at mass velocities from 100 to 500 kg/(m2·s), saturation temperature of 10 °C, and the circulation ratio of lubricating oil (PAG) was from 0 to 1.0 mass%. Flow pattern observations mainly showed slug and wavy flow for the smooth tube, but annular flow for the micro‐fin tube. Compared with the flow patterns in the case of pure CO2, an increase in frequency of slug occurrence in the slug flow region, and a decrease in the quantity of liquid at the top of the tube in the annular flow region were observed in the case of CO2‐oil mixtures. With pure CO2, the flow boiling heat transfer was dominated by nucleate boiling in the low vapor quality region, and the heat transfer coefficients for the micro‐fin tube were higher than those of the smooth tube. With CO2‐oil mixtures, the flow boiling heat transfer was dominated by convective evaporation, especially in the high vapor quality region. In addition, the heat transfer coefficient decreased significantly when the oil circulation ratio was larger than 0.1 mass%. For the pressure drop characteristics, in the case of pure CO2, the homogeneous flow model agreed with the experimental results within ±30% for the smooth tube. The pressure drops of the micro‐fin tube were 0–70% higher than those predicted with the homogeneous flow model, and the pressure drops increased for the high oil circulation ratio and high vapor quality conditions. The increases in the pressure drops were considered to be due to the increase in the thickness of the oil film and the decrease in the effective flow cross‐sectional area. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20287  相似文献   

15.
Water management significantly affects the performance of a proton exchange membrane fuel cell (PEMFC). Therefore, interest is felt to numerically investigate water droplet movement and slug formation inside the microchannel (gas) of PEMFC. Two important parameters—water coverage ratio and pressure drop have been studied in detail. A U-shaped geometry with a round corner is used for this purpose. 3D unsteady-state models are used to study the drop dynamics using commercial CFD software ANSYS FLUENT 18. For tracking of water drop dynamics, the volume of fluid model is used. Two different situations are simulated. In the first case, the investigation of hydrodynamics of the 0.4 mm drop adhered to the surface of the gas diffusion layer (GDL) has been done. In the second case, simulation of air-water slug flow has been done. GDL surfaces at upstream and downstream of bend are modified using user-defined functions, such that the GDL surface has a dynamic contact angle with respect to the direction of flow. This makes it a continuously hydrophilic surface at upstream and continuously hydrophobic surface at downstream with respect to the direction of flow. The impact of GDL wettability on water retention and removal has been discussed. It is noted that the presence of a gradient facilitates the removal of water drop adhered to the GDL surface. For the case of a suspended drop with an increase of 1°/mm in the magnitude of the gradient, a decrease of 30% is observed in water coverage ratio and pressure drop observed in the channel. Such modified surfaces aids in the conversion of slugs to film at the downstream of bend that reduces maldistribution. The pressure fluctuations and average pressure drop are reduced by 66% when subjected to the aforementioned hybrid gradient.  相似文献   

16.
The present study illustrates new experimental two-phase flow pattern observations together with diabatic boiling and adiabatic two-phase frictional pressure drop results for ammonia (R717) flowing inside a 14-mm internal diameter, smooth horizontal stainless steel tube. The flow pattern observations were made for mass velocities of 50, 100 and 160 kg s?1 m?2 and saturation temperatures of ?14, ?2 and 12 °C for vapor qualities ranging from 0.05 to 0.6. The flow patterns observed during the study included: stratified-wavy, slug-stratified-wavy, slug, intermittent and annular. For all the experimental conditions, the flow structure observations were compared against the predictions of the flow pattern map model of Wojtan et al. [L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, Int. J. Heat Mass Transfer 48 (2005) 2955–2969] and showed very good correspondence. The frictional pressure drop measurements were obtained for vapor qualities from 0.05 to 0.6, saturation temperatures from ?14 to 14 °C, mass velocities from 50 to 160 kg s?1 m?2 and heat fluxes from 12 to 25 kW m?2. The experimental results show the traditional pressure drop trends: the frictional pressure drop increases with vapor quality and mass velocity. Moreover, the results also show that both diabatic and adiabatic frictional pressure drop values are similar, that is, the boiling process in itself does not affect the frictional pressure drop. The correlations of Friedel [L. Friedel, Improved friction drop correlations for horizontal and vertical two-phase pipe flow, in: European Two-Phase Flow Group Meeting, paper E2, Ispra, Italy, 1979], Lockhart and Martinelli [R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase two-component in pipes, Chem. Eng. Process 45 (1949) 39–48] and Müller-Steinhagen and Heck [H. Müller-Steinhagen, K. Heck, A simple friction pressure correlation for two-phase flow in pipes, Chem. Eng. Process 20 (1986) 297–308] predicted only 54%, 52% and 60% of the experimental data within ±30%, respectively. The correlation of Grönnerud [R. Grönnerud, Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type of evaporators, part iv: two-phase flow resistance in boiling refrigerans, in: Annexe 1972-1, Bull. de l’Inst. Froid, 1979] predicted 93% of the data and the flow pattern based method of Moreno Quibén and Thome [J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part II: new phenomenological model, Int. J. Heat Fluid Flow 28 (2007) 1060–1072] predicted more than 97% of the experimental data within the same error band, while the latter method captures almost 89% of the data within ±20%.  相似文献   

17.
The present work shows the slurry flow characteristics of bottom ash particulates having density 2219 kg/m3 at different Prandtl number through horizontal pipe bend. The simulation is carried out by adopting Eulerian two-phase model in conjunction with RNG k-ε turbulence model using available commercial software ANSYS Fluent. The transportation of solid particulates has the settling behaviour in the slurry pipeline and that leads to the sedimentation and blockage of the pipeline resulting more power and pressure drop in the pipeline. Therefore, it is important to know the transport capability of the solid particulates at different Prandtl fluids to minimise the pressure loss. The fluid properties at four Prandtl numbers i.e., 1.34, 2.14, 3.42 and 5.83 are used to carry the bottom ash concentration ranging from 40 to 60% (by weight) at mean flow-velocity ranging from 1 to 5 ms?1. The obtained computational results for pressure drop are validated with the published data in the literature and found in good agreement. The findings show that the pressure drop rises with escalation in flow velocity and Prandtl number for chosen efflux concentration range. The bottom ash particulates flowing at higher Prandtl fluid experiences less pressure drop through bend cross section in comparison to bottom ash particulates flowing at low Prandtl fluid. Finally, the contours of granular pressure, granular temperature and wall shear stress are predicted and discussed in details through the bend cross section to understand the complex slurry flow for chosen Prandtl numbers.  相似文献   

18.
This study aimed to make an energy analysis of sugar beet production in K?rklareli Province of Turkey during production season in 2012–2013. In order to determine energy input-output of sugar beet, the surveys were performed in 48 sugar beet farms, selected by using Neyman method, located in K?rklareli Province. The data were collected by face-to-face questionnaires and observations. The energy input and output were calculated as 34,201.75 and as 285,600 MJ ha?1, respectively, in sugar beet production. Energy inputs consist of 41.97 % chemical fertilizer’s energy, 21.16 % diesel fuel energy, 11.97 % irrigation, 11.96 % electricity energy, 6.47 % human labour energy, 5.53 % machinery energy, 0.61 % seed energy and 0.33 % chemical energy. Energy usage efficiency, energy productivity, specific energy and net energy in sugar beet production were calculated as 8.35, 1.98 kg MJ?1, 0.50 MJ kg?1 and 251,398.25 MJ ha?1, respectively.  相似文献   

19.
ABSTRACT

Evaporators of small and medium refrigeration systems, as in commercial and automobile air conditioning applications, are being studied to develop more compact and lighter equipment, that reaches good thermal performance and reliability, with low pressure drop. In this way, evaporators are being designed with small channels and materials like aluminum. Moreover, different refrigerants are being tested to substitute for hydrofluorocarbon (HFC) refrigerants, with different operational temperatures and pressures. Some of them, like hydrocarbons, although they present advantages with respect to their thermodynamic and transport properties, should be used with small charge in the system due to their flammability. This work presents the results of an experimental study to characterize the flow boiling of the refrigerant R600a (isobutane) in a multiport aluminum extruded tube with 7 parallel minichannels of 1.47 mm hydraulic diameter. The effects of mass velocity, heat flux, and vapor quality on heat transfer were investigated for constant saturation temperature and pressure. Heat fluxes in the range from 5 to 30 kW m?2, mass velocities set to discrete values in the range of 50 to 200 kg m?2 s?1, and saturation temperature of 20°C were considered. It was verified a significant effect of heat flux. Moreover, some images of flow patterns, in different conditions, are presented, and the main patterns identified were slug, intermittent, and annular.  相似文献   

20.
ABSTRACT

Heat transfer and pressure drop characteristics of condensation for R410A inside horizontal tubes (dh = 0.25, 1, and 2 mm) at saturation temperatures Tsat = 310, 320, and 330 K are investigated numerically. The results indicate that local heat transfer coefficients and pressure drop gradients increase with increasing mass flux and vapor quality and with decreasing tube diameter and saturation temperature. Liquid film thickness also increases with increasing saturation temperature because of the lower surface tension at higher saturation temperature. When gravity dominates the condensation process, a vortex with its core lying at the bottom of the tube is found in the vapor phase region. For the annular flow regime, stream traces point from the symmetry plan to the liquid–vapor interface, where the vapor phase becomes the liquid phase. Numerical heat transfer coefficients and pressure drop gradients are compared to available empirical correlations. Two new models for heat transfer coefficients and frictional pressure drop gradients are developed based on the numerical work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号