首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ABSTRACT

Nanofluids are conventional heat transfer fluids with suspended nanoparticles to enhance their thermal conductivity. However, enhancement of thermal conductivity is coupled with increased viscosity. This study investigates the efficiency of nanofluids (ratio of thermal conductivity and viscosity enhancement) with the effects of particle size and temperature using molecular dynamic (MD) simulation. The efficiency of nanofluids is improved by increasing particle size and temperature. The thermal conductivity enhancement increases with increasing particle size, but is independent of temperature; the viscosity enhancement decreases with increasing particle size and temperature. Particle size variation is therefore shown to be more effective than temperature control.  相似文献   

2.
Compared to thermal conductivity and convection studies with nanofluids; the optical and radiative properties of nanofluids have received much less interest. However, very recently, the number of studies on radiative heat transfer in nanofluids has been increasing. This is due to the fact that, in general, a composite nanofluid has different properties than those found in either the base fluid or the particles. At high temperatures, knowledge of the resultant radiative properties becomes increasingly significant. The concept of using direct absorbing nanofluid (suspension formed by mixing nanoparticles and a liquid) recently been shown numerically and experimentally to be an efficient method for harvesting solar thermal energy. Nanofluid is a product of emerging field of nanotechnology, where nanoparticles (1–100 nm in size) are mixed with conventional base fluids (water, oils, glycols, etc.). Nanofluids as an innovative class of heat transfer fluids represent a rapidly emerging research field where nano-science and thermal engineering coexist. Nanofluids are considered to be a two-phase system, comprised of a solid and a liquid phase. Compared to the base fluids like water or oil, nanofluids feature enhanced thermo-physical properties such as thermal diffusivity, viscosity, thermal conductivity, convective heat transfer coefficients, and optical properties. They offer unprecedented potential in many applications. Recent development in solar thermal collectors is the use of nanofluids to absorb the light directly. There is much current work going on the use of nanoparticles in several applications. With thousands of papers published every year, a comprehensive literature survey is impossible, and only selected representative publications are cited in this paper, particularly as they concern fundamental scientific insights on the fundamental optical properties of nanofluids.  相似文献   

3.
Nanofluids are a class of colloidal dispersion of nanosized particles which are found to exhibit anomalous heat conducting properties compared to other conventional heat transfer fluids. Among various factors responsible for this anomaly, the role of nanolayer thickness is found to be quite important. This article includes its effect by suggesting a new exponential form for the profile of thermal conductivity in the interfacial layer. The effect of nanoparticle size, the volume fraction, and the ratio of thermal conductivity of the nanoparticle to the base fluid form part of the discussion. The presented scheme predicts well the enhancement of thermal conductivity of two nanofluids, alumina/EG and CuO/water, used as an example. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 288–296, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21084  相似文献   

4.
A simple mathematical model for calculating the effective thermal conductivity of nanofluids has been developed based on the thermal resistance approach. The model is developed by considering both effects of a solid‐like nanolayer and convective heat transfer caused by Brownian motion which have not been considered simultaneously by most available models in the literature. In addition the correlation of Prasher and Phelan for the convective heat transfer coefficient is modified to take into account the effect of the solid‐like nanolayer. In addition a general value for n (different from the one presented by Tillman and Hill) is introduced to modify the thickness of the solid‐like nanolayer. The latter is done by considering both conduction and convection heat transfer mechanisms. Comparisons with previously published experimental results and other mathematical models show that the presented model could well predict a nanofluids effective thermal conductivity as a function of the nanoparticles mean diameter, volume fraction, and temperature for different kinds of nanofluids. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20290  相似文献   

5.
This paper presents nanofluid convective heat transfer and viscosity measurements, and evaluates how they perform heating buildings in cold regions. Nanofluids contain suspended metallic nanoparticles, which increases the thermal conductivity of the base fluid by a substantial amount. The heat transfer coefficient of nanofluids increases with volume concentration. To determine how nanofluid heat transfer characteristics enhance as volume concentration is increased; experiments were performed on copper oxide, aluminum oxide and silicon dioxide nanofluids, each in an ethylene glycol and water mixture. Calculations were performed for conventional finned-tube heat exchangers used in buildings in cold regions. The analysis shows that using nanofluids in heat exchangers could reduce volumetric and mass flow rates, and result in an overall pumping power savings. Nanofluids necessitate smaller heating systems, which are capable of delivering the same amount of thermal energy as larger heating systems using base fluids, but are less expensive; this lowers the initial equipment cost excluding nanofluid cost. This will also reduce environmental pollutants because smaller heating units use less power, and the heat transfer unit has less liquid and material waste to discard at the end of its life cycle.  相似文献   

6.
During the past decades, the technology to make particles in nanometer dimensions has been improved and a new kind of solid–liquid mixture, which is called a nanofluid, has appeared. Nanofluids are an advanced kind of fluid containing a small quantity of nanoparticles (usually less than 100 nm) that are uniformly and stably suspended in the liquid. The dispersion of a small amount of solid nanoparticles in conventional fluids such as water or ethylene glycol changes their thermal conductivity remarkably. Since then, nanofluids have been applied to enhance the thermal performance of many engineering systems. Recently, nanofluids have been used as heat transfer fluids to enhance the performance of solar collector devices. This paper reviews the recent progress and applications of nanofluids in flat-plate and evacuated tube solar collectors. Other than to review the efficiency of solar collectors with nanofluids, the paper also discusses the impact of nanofluids in solar collectors on economic and environmental viewpoints. Finally, the challenges and future trends in the application of nanofluids in thermal solar collectors are discussed.  相似文献   

7.
Nanofluids are nanotechnology-based colloidal dispersions engineered by stably suspending nanoparticles. Transmission electron microscopy and scanning electron microscope images are acquired to characterize the shape and size of SiC nanoparticles, because the properties of the nanofluids depend on the morphologies of nanoparticles. The dispersion behavior for SiC/deionized water (DIW) nanofluids were investigated under different pH values and characterized with the zeta potential values. The isoelectric point of SiC/DIW nanofluid was identified in terms of colloidal stability. Then their viscosity and thermal conductivity were investigated as a function of volume fraction to evaluate SiC/DIW nanofluids’ potential to function as more effective working fluids in heat transfer applications.  相似文献   

8.
Nanofluids are considered to offer important advantages over conventional heat transfer fluids. Over a decade ago, researchers focused on measuring and modeling the effective thermal conductivity and viscosity of nanofluids. Recently important theoretical and experimental research works on convective heat transfer appeared in the open literatures on the enhancement of heat transfer using suspensions of nanometer-sized solid particle materials, metallic or nonmetallic in base heat transfer fluids. The purpose of this review article is to summarize the important published articles on the enhancement of the forced convection heat transfer with nanofluids.  相似文献   

9.
Nanofluids are a suspension of particles with ultrafine size in a conventional base fluid that increases the heat transfer performance of the original base fluid. They show higher thermal performance than base fluids especially in terms of the thermal conductivity and heat transfer coefficient. During the last decade, many studies have been carried out on the heat transfer and flow characteristics of nanofluids, both experimentally and theoretically. The purpose of this article is to propose a dispersion model for predicting the heat transfer coefficient of nanofluids under laminar flow conditions. TiO2 nanoparticles dispersed in water with various volume fractions and flowing in a horizontal straight tube under constant wall heat flux were used. In addition, the predicted values were compared with the experimental data from He et al. [14]. In the present study, the results show that the proposed model can be used to predict the heat transfer behaviour of nanofluids with reasonable accuracy. Moreover, the results also indicate that the predicted values of the heat transfer coefficient obtained from the present model differ from those obtained by using the Li and Xuan equation by about 3.5% at a particle volume fraction of 2.0%.  相似文献   

10.
Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20–30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.  相似文献   

11.
In the early 1990s, as I began exploring ways to apply nanotechnology to heat transfer engineering, I saw the possibility of breaking down the century-old technical barriers of conventional solid-liquid suspensions by stably suspending nanoparticles. During the past decade, a series of pioneering experiments have discovered that nanofluids exhibit a number of novel thermal transport phenomena. Nanofluids are of great scientific interest because these new thermal transport phenomena surpass the fundamental limits of conventional macroscopic theories of suspensions. Furthermore, nanofluids technology can provide exciting new opportunities to develop nanotechnology-based coolants for a variety of innovative applications. As a result, the study of nanofluids has emerged as a new field of scientific research and innovative applications. The nanofluids review paper in this issue of Heat Transfer Engineering reports on the current status of nanofluids production; shows verified parametric trends and magnitudes in thermal conductivity and heat transfer enhancement in nanofluids; and assesses the current status of nanofluids applications. This paper also points to future research directions to achieve ultrahigh heat transfer enhancement.  相似文献   

12.
ABSTRACT

Nanofluids are suspensions of nanoparticles into convectional heat transfer fluid to enhance the thermal conductivity of its base fluid. The roles of Brownian motion of nanoparticles and induced micro-convection in base fluid in enhancing the thermal conductivity of nanofluids were investigated using molecular dynamic (MD) simulation. The roles were determined by studying the effect of particle size on thermal conductivity and diffusion coefficient. Results show that the Brownian motion and induced micro-convection have insignificant effects on enhancing the thermal conductivity. The hydrodynamic effect is restricted by an amorphous-like interfacial fluid structure in the vicinity of the nanoparticle due to its higher specific area.  相似文献   

13.
Nanofluids are stable suspension of nanometer sized particles and exhibit extremely attractive thermal properties that make them a potential candidate for application in heat transfer devices ranging from microelectronic gadgets to thermal power plants. In the present study, we have synthesized Al-5wt%Zn nanoparticles by mechanical alloying, characterized these nanoparticles using X-ray diffraction and scanning and transmission electron microscopy. Subsequently, these nanoparticles are dispersed to the tune of 0.01–0.10 vol% in ethylene glycol (base fluid) following a careful mixing protocol. Thermal conductivity of the nanofluids and base fluid has been measured using the transient hot-wire method. It is observed that thermal conductivity of the nanofluids strongly depend on the concentration, particle size, fluid temperature and stability of dispersed nanoparticles in the base fluid. A maximum of 16% enhancement in thermal conductivity has been recorded at a nanoparticle loading of 0.10 vol%. Unlike data reported in some articles, thermal conductivity ratio of Al-5wt%Zn dispersed ethylene glycol based nanofluids is observed to decrease with the increase in crystallite/grain size of the particles.  相似文献   

14.
The paper features the mathematical model representing the analytical calculation of phonon and electron heat transfer analysis of thermal conductivity for nanofluids. The mathematical model was developed on the basis of statistical nanomechanics. We have made the detailed analysis of the influence of temperature dependence on thermal conductivity for nanofluids. On this basis are taken into account the influences such as formation of nanolayer around nanoparticles, the Brown motion of solid nanoparticles and influence of diffusive-ballistic heat transport.The analytical results obtained by statistical mechanics are compared with the experimental data and they show relatively good agreement.  相似文献   

15.
In recent years, nanofluids have been attracting significant attention in the heat transfer research community. These fluids are obtained by suspending nanoparticles having sizes between 1 and 100 nm in regular fluids. It was found by several researchers that the thermal conductivity of these fluids can be significantly increased when compared to the same fluids without nanoparticles. Also, it was found that pool boiling critical heat flux increases in nanofluids. In this paper, our objective is to evaluate the impact of different nanoparticle characteristics including particle concentration, size and type on critical heat flux experimentally at saturated conditions. As a result, this work will document our experimental findings about pool boiling critical heat flux in different nanofluids. In addition, we will identify reasons behind the increase in the critical heat flux and present possible approaches for analytical modeling of critical heat flux in nanofluids at saturated conditions.  相似文献   

16.
Nanofluids are advanced fluids with novel properties useful for diverse applications in heat transfer. This article reports the experimental determination of thermal conductivity and viscosity for silica (SiO2) nanofluids in ethylene glycol (EG) and glycerol (G) as base fluids. A two-step method was applied to disperse the nanoparticles in the base fluids for the particle volume concentration of 0.5–2.0%. The dispersion stability of the nanofluids was evaluated by zeta potential analysis. All the measurements were performed in the temperature interval from 30 °C to 80 °C. It was found that the thermal conductivity increases with temperature. The SiO2-EG showed higher conductivity enhancement than SiO2-G nanofluids. Rheological analyses confirm Newtonian behavior for silica nanofluids within shear rate range of 20–100 s 1. Viscosity decreases with an increase in operating temperature. The SiO2-EG demonstrated very weak temperature dependence compared to the SiO2-G nanofluids. Based on these measured properties, the criterion for heat transfer performance was determined. Furthermore, equations have been proposed with accuracy within ± 10% deviations to predict the thermal conductivity and dynamic viscosity of EG and G-based SiO2 nanofluids.  相似文献   

17.
Nanofluids are a new class of engineered heat transfer fluids which exhibit superior thermophysical properties and have potential applications in numerous important fields. In this study, nanofluids have been prepared by dispersing SiO2 nanoparticles in different base fluids such as 20:80% and 30:70% by volume of BioGlycol (BG)/water (W) mixtures. Thermal conductivity and viscosity experiments have been conducted in temperatures between 30 °C and 80 °C and in volume concentrations between 0.5% and 2.0%. Results show that thermal conductivity of nanofluids increases with increase of volume concentrations and temperatures. Similarly, viscosity of nanofluid increases with increase of volume concentrations but decreases with increase of temperatures. The maximum thermal conductivity enhancement among all the nanofluids was observed for 20:80% BG/W nanofluid about 7.2% in the volume concentration of 2.0% at a temperature of 70 °C. Correspondingly among all the nanofluids maximum viscosity enhancement was observed for 30:70% BG/W nanofluid about 1.38-times in the volume concentration of 2.0% at a temperature of 70 °C. The classical models and semi-empirical correlations failed to predict the thermal conductivity and viscosity of nanofluids with effect of volume concentration and temperatures. Therefore, nonlinear correlations have been proposed with 3% maximum deviation for the estimation of thermal conductivity and viscosity of nanofluids.  相似文献   

18.
Nanofluids attract researchers in many ways for their enhanced heat transfer properties. Nanorefrigerant is one kind of nanofluids. It has better heat transfer performance than traditional refrigerants. Thermal conductivity, viscosity and density are the basic thermophysical properties that must be analyzed before performance analysis. This paper presents a comprehensive review of nucleate pool boiling, flow boiling, condensation and two-phase flow of refrigerant-based nanofluids. The effects of nanolubricants on boiling and two-phase flow phenomena are presented as well. Furthermore, studies of applications and preparation of refrigerant-based nanofluids are presented. For the limited studies done so far, there are some controversies from one study to another. Based on results available in the literatures, it has been found that nanorefrigerants have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional refrigerant. This can be considered as one of the key parameters for enhanced performance for refrigeration and air conditioning systems. Because of its superior thermal performances, latest up to date literatures on this property has been summarized and presented in this paper as well.  相似文献   

19.
Nanofluids, suspensions of nanoparticles (less than 100 nm) in a basefluid, have shown enhanced heat transfer characteristics. In this study, thermal performances of nanofluids in industrial type heat exchangers are investigated. Three mass particle concentrations of 2%, 4%, and 6% of silicon dioxide–water (SiO2–water) nanofluids are formulated by dispersing 20 nm diameter nanoparticles in distilled water. Experiments are conducted to compare the overall heat transfer coefficient and pressure drop of water vs. nanofluids in laboratory-scale plate and shell-and-tube heat exchangers. Experimental results show both augmentation and deterioration of heat transfer coefficient for nanofluids depending on the flow rate and nanofluid concentration through the heat exchangers. This trend could be explained by the counter effect of the changes in thermo-physical properties of fluids together with the fouling on the contact surfaces in the heat exchangers. The measured pressure drop while using nanofluids show an increase when compared to that of basefluid which could limit the use of nanofluids in industrial applications.  相似文献   

20.
The development of nanotechnology has witnessed an emergence of new generation of heat transfer fluids known as nanofluids. Nanofluids are used as coolants which provide excellent thermal performance in shell and tube heat exchangers. However, the viscosity of these fluids increases with the addition of nanoparticles. Furthermore, the performance of these heat exchangers is influenced by the arrangement of baffles. Thus, in this paper, the study focuses on the heat transfer and entropy analysis of segmental, 25° and 50 helical baffles shell and tube heat exchangers. Heat transfer rate of the 25 helical baffles heat exchanger found to be the highest among the three heat exchangers studied in this research. Study indicates that shell and tube heat exchanger with 50° helical baffles exhibits lowest entropy generation among three different heat exchangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号