首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat transfer behavior of phase change material fluid (PCM) under laminar flow conditions in circular tubes and internally longitudinal finned tubes was studied. An effective specific heat technique was used to model the phase change process. Heat transfer results for a smooth circular tube with PCM fluid were obtained under hydrodynamically and thermally fully developed conditions. Results for the finned tube were obtained using the H2 and T boundary conditions. It was determined that the Nusselt number was strongly dependent on the Stefan number, fin thermal conductivity value, and height of the fins.  相似文献   

2.
相变微胶囊悬浮液(MPCS)可作为热交换介质和储热流体,但其导热率较低导致其应用受到一定的限制。以水为基液使用相变微胶囊(MPCM)制备MPCS,加入氧化锌(ZnO)颗粒以提高MPCS导热率。使用旋转流变仪、差式热量扫描仪、导热仪分别测定了MPCS的黏度、相变潜热和导热系数等物理性质。设计并搭建了试验台,在内径6 mm的圆管中,使用水、MPCS以及ZnO@MPCS在层流和湍流下进行强制对流换热实验,通过对比其换热情况分析ZnO对MPCS换热特性的影响。结果表明:加入ZnO的MPCS具有良好的储热性和导热性,1%ZnO@5%MPCS导热系数较5%MPCS提高了17.9%。层流条件下MPCS的平均局部换热系数低于水,1%ZnO@5%MPCS平均局部换热系数比水高6.5%;湍流时,1%ZnO@5%MPCS在相同质量流量和功率下的平均局部换热系数相较于水提高了15.7%。  相似文献   

3.
Forced convection cooling is an effective method in thermal management that relies mainly on dissipating heat by pumping heat transfer fluid (HTF) through the heat source. In this paper, we investigate the thermal properties enhancement of dielectric water as the HTF. To enhance the properties of the HTF, microencapsulated phase change materials (MPCM) will be added to the base fluid. The MPCMs are composed of phase change material (PCM) encapsulated with shell materials. The PCM inside the capsules may undergo a phase change. This leads to a significant heat gain and release. The numerical model is developed to solve for continuity, momentum, and heat transfer equations using the finite volume method. The behavior of the MPCM slurry in curved channels, generates unique patterns due to different viscosity values and the centrifugal forces. Our preliminary numerical data on MPCM slurry through planar spiral coil heat exchangers show the new patterns of velocity and heat transfer curves. The current paper studies the steady condition of laminar flow at different boundary conditions. The velocity and temperature profiles, heat transfer data with different mass fractions of MPCM additives to the base fluid, and their heat removal capabilities are quantified and discussed in detail.  相似文献   

4.
A novel phase change microcapsule with compound crust is briefly introduced in this paper, and the heat transfer enhancement due to a microencapsulated phase change material is investigated parametrically for laminar convective heat transfer in a circular tube with constant wall temperature. The size of the phase change mushy region and the phase change interface locations are given for the various governing parameters. Two enhancement ratios, the traditional enhancement ratio and a modified enhancement ratio, were used to quantify the enhanced heat transfer characteristics of the microencapsulated phase change suspension for six major parameters. The six parameters are the bulk Stephan number, the volumetric concentration of the solid-phase, the particle-to-tube radius ratio, the dimensionless initial subcooling, the dimensionless phase change temperature range, and the bulk Reynolds number. The simulations show that the bulk Stephan number and the volumetric concentration are the most important parameters influencing the heat transfer enhancement of the microencapsulated suspension. The influence of the microcapsule diameters on the heat transfer enhancement comes from the microconvection, instead of the latent heat release due to the phase change. In addition, the combined effect of changes in all of these parameters on the heat transfer enhancement was examined.  相似文献   

5.
This article investigates laminar heat transfer characteristic of two-phase microencapsulated phase-change material (MPCM) suspension flows within minichannels under a constant wall heat flux boundary. Capsules containing paraffin wax with phase-change temperature between 36.1°C and 38.1°C are examined and found to be well suited for electronics cooling applications using liquid cold plate technologies. In particular, it is shown that the large thermal capacity of MPCM slurries around the phase-change temperature can lead toward greater isothermality of isoflux systems, a characteristic of significant interest to telecommunication, laser and biomedical applications. The principal focus of the study is to examine heat transfer characteristics within standard tube flow geometries, quantify the heat transfer augmentation/degradation observed, and finally, elucidate the mechanisms from which these result. Through the study volume concentrations of the MPCM slurry were varied between 0% and 30.2%. High-resolution local heat transfer measurements were obtained using infrared thermography and results presented in terms of local Nusselt number versus inverse Graetz parameter. These spanned both the thermal entrance and the fully developed flow regions with inverse Graetz number ranging from 10?3 to 100. Results show that significant heat transfer enhancements are attainable via the use of MPCM slurries over conventional single-phase coolants. Overall, the study highlights mechanisms that lead to significant heat transfer enhancements in heat exchange devices employing microencapsulated phase-change material slurries.  相似文献   

6.
In many heat exchanger applications, working fluid inside the tubes is subjected to considerable temperature changes. Coiled tubes are used widely in heat exchanger applications due to the enhanced heat transfer rate caused by secondary flows. This study examines the thermal performance of three configurations of coiled tubes of square cross-section, namely, in-plane, helical, and conical coiled tubes, subjected to a large temperature difference between the fluid and the wall and compares it with that of a straight tube of identical cross-section area and length. The concept of figure of merit (FoM) is introduced to compare the heat transfer performance of the various configurations tested. The results indicate that FoM increases as the wall temperature is increased. In addition, the combination of temperature-induced buoyant flow and curvature-induced secondary flow significantly affects the flow behavior and heat transfer performance inside the tubes. The coil pitch in helical and conical tubes has an adverse effect on the heat transfer performance due to shift in vortices generation. The in-plane spiral tube operates at a higher wall temperature and lower Reynolds number, which gives rise to a higher FoM. The highest Nusselt number is obtained for the in-plane spiral tube at higher wall temperature and higher Reynolds number, which shows potential for practical applications.  相似文献   

7.

Unsteady laminar flow past a heated square cylinder mounted inside a plane channel was investigated numerically. The blockage ratio was chosen as 1/8 and the Reynolds number based on the mean flow velocity and chord length of the square cylinder was selected as less than 200, for which the two-dimensional behavior of the flow is assured. The time-averaged Nusselt number as well as some integral parameters such as drag coefficient, recirculation length, and Strouhal number were obtained and compared with literature. Results show a nearly linear increase in recirculation length and decrease in drag coefficient with increasing Reynolds number for the steady flow regime. There is an increase in the total Nusselt number and drag coefficient with a Reynolds number for unsteady flow regime, where vortex shedding is observed from the cylinder. A correlation was obtained for the variation of the total Nusselt number with the Reynolds number.  相似文献   

8.
For annular-sector ducts, steady, laminar, and constant-property forced-convection flow and heat transfer in the entrance region have been analyzed numerically using a general, marching procedure. Two types of thermal boundary conditions have been considered: (1) uniform temperature both axially and peripherally (T boundary condition); (2) uniform axial heat flux with uniform peripherally temperature at any cross section (H1 boundary condition). Numerical analysis has been conducted in the following range of parameters: Di/Do = 0.00, 0.25, 0.50, apex angle of the sector 2 alpha = 18 degrees, 20 degrees, 24 degrees, 30 degrees, 40 degrees, and Pr = 0.707. The solutions of the developing Nusselt number and friction factor are presented as functions of nondimensional axial distance. Comparisons are made between the computed results and the analytical or numerical results available in the literature. For all cases compared, satisfactory agreement is obtained.  相似文献   

9.
Fei Ma 《传热工程》2013,34(17-18):1487-1497
ABSTRACT

The conventional solar collectors which absorb solar energy through surface of the receiver have much energy waste during energy conversion process due to heat loss from the pipe surface. Volumetric absorption solar collectors (VASC) can overcome this problem through directly absorbing solar energy by nanofliud with excellent optical absorption property. Nano-encapsulated phase change material (NPCM) is a kind of novel composite PCMs widely adopted in thermal energy storage system. The NPCM slurry (NPCS) has great potential to be used in VASC since it can be used as both the heat transfer fluid and energy storage medium. In the present study, a numerical model based on the Eulerian-Eulerian approach is built to investigate the heat transfer characteristics of NPCS in a parallel plate channel for volumetric absorption of solar energy. Influences of different parameters such as the extinction coefficient, flow velocity, radiative intensity on the performance of collector are studied through the numerical simulation. The results indicate that the NPCS shows better performance in the VASC compared with the conventional nanofluids without phase change. The information provided is helpful in the further study of solar energy volumetric absorption.  相似文献   

10.
本文提出将一种正反扭转且带有双排半圆切口的新型扭带用在套管式换热器上在层流条件下对换热器其换热性能和流动特性进行实验研究并分析这种扭带的综合性能。实验工质为水,Re(雷诺数)变化范围为540~1 440。本实验采用4种不同长度扭带做对比,4种分别是全长、3/4长、半长和1/4长扭带。结果显示,插入全长、3/4长、半长和1/4长扭带的换热Nu(努塞尔数)分别是光管的1.92~3.80,1.69~3.20,1.60~2.62和1.48~2.23倍;f(摩擦阻力系数)分别是光管的3.69~6.30,3.30~5.51,2.72~4.67,2.33~3.55倍;对应的PEC(综合性能指标)分别为1.24~2.06,1.14~1.81,1.15~1.57和1.11~1.47。插入全长扭带在实验范围内达到了最优,插入其它长度扭带的PEC也都高于1,可以应用在压力较小的工况下。最后,本文还对该类型扭带拟合了实验关联式,通过对比实验值和预测值,Nu和f的误差均在10%以内,这为今后的研究提供了理论依据。  相似文献   

11.
Hideo Mori 《传热工程》2016,37(7-8):686-695
For the development of a high-performance heat exchanger using small channels or minichannels for air-conditioning systems, it is necessary to clarify the characteristics of vapor‐liquid two-phase flow and heat transfer of refrigerants in small-diameter tubes. In this keynote paper, the related research works that have already been performed by the author and coworkers are introduced. Based on the observations and experiments of R410A flowing in small-diameter circular and noncircular tubes with hydraulic diameter of about 1 mm, the characteristics of vapor‐liquid two-phase flow pattern and boiling heat transfer were clarified. In low quality or mass flux and low heat flux condition, in which the flow was mainly slug, the “liquid film conduction evaporation” heat transfer peculiar to small-diameter tubes prevailed and exhibited considerably good heat transfer compared to nucleate boiling and forced convection evaporation heat transfer. The effects of the tube cross-sectional shape and flow direction on the heat transfer primarily appeared in the region of the “liquid film conduction evaporation” heat transfer. A new heat transfer correlation considering all of three contributions has been developed for small circular tubes.  相似文献   

12.
Zuoyi Chen 《传热工程》2013,34(16):1392-1400
The fluid flow and heat transfer characteristics in a cross-corrugated triangular channel are studied under laminar forced flow and uniform wall temperature conditions. Both the local and the periodic mean values of friction factor and wall Nusselt numbers in the hydro and thermally developing entrance region are investigated. It is found that at higher Reynolds numbers, recirculations in the lower wall valleys are a dominant factor for flow and heat transfer, while at lower Reynolds numbers, parallel flows in the upper wall corrugation are the predominant factor. Compared with a parallel flat plates duct, the Nusselt numbers in a cross-corrugated triangular duct can be enhanced, and can be even higher at higher Reynolds numbers. The growth of steady recirculations and the concomitant periodic disruption and thinning of the boundary layer promote enhanced transport of heat as well as momentum. Effects of heat transfer enhancement are more obvious under higher Reynolds numbers. Two correlations are proposed to predict the periodic mean values of Nusselt numbers and friction factors for Reynolds numbers from 10 to 2000.  相似文献   

13.
14.
An overview of the recent developments in the study of flow patterns and boiling heat transfer in small to micro diameter tubes is presented. The latest results of a long-term study of flow boiling of R134a in five vertical stainless-steel tubes of internal diameter 4.26, 2.88, 2.01, 1.1, and 0.52 mm are then discussed. During these experiments, the mass flux was varied from 100 to 700 kg/m2s and the heat flux from as low as 1.6 to 135 kW/m2. Five different pressures were studied, namely, 6, 8, 10, 12, and 14 bar. The flow regimes were observed at a glass section located directly at the exit of the heated test section. The range of diameters was chosen to investigate thresholds for macro, small, or micro tube characteristics. The heat transfer coefficients in tubes ranging from 4.26 mm down to 1.1 mm increased with heat flux and system pressure, but did not change with vapor quality for low quality values. At higher quality, the heat transfer coefficients decreased with increasing quality, indicating local transient dry-out, instead of increasing as expected in macro tubes. There was no significant difference between the characteristics and magnitude of the heat transfer coefficients in the 4.26 mm and 2.88 mm tubes but the coefficients in the 2.01 and 1.1 mm tubes were higher. Confined bubble flow was first observed in the 2.01 mm tube, which suggests that this size might be considered as a critical diameter to distinguish small from macro tubes. Further differences have now been observed in the 0.52 mm tube: A transitional wavy flow appeared over a significant range of quality/heat flux and dispersed flow was not observed. The heat transfer characteristics were also different from those in the larger tubes. The data fell into two groups that exhibited different influences of heat flux below and above a heat flux threshold. These differences, in both flow patterns and heat transfer, indicate a possible second change from small to micro behavior at diameters less than 1 mm for R134a.  相似文献   

15.
A numerical investigation of heat transfer from a uniformly heated slab of finite thickness by plane laminar wall jet flow under combined forced and natural convection, i.e., mixed convection, is presented. The problem has been solved for two classical cases such as Pr ? 1 and Pr ? 1. The effects of the Grashof number (Gr), Reynolds number (Re), Prandtl number (Pr), and thermal conductivity ratio (Rk) between the slab and fluid medium are investigated on the heat transfer characteristics, i.e., local Nusselt number, interface temperature, and average Nusselt number.  相似文献   

16.
The conducted review of the experiments for pressure losses and convection heat transfer in toroidal and coiled tubes yielded 2,410 pressure losses data for water, air, and ethylene glycol flows in 62 different coiled tubes. These data are used to develop a friction factor correlation, in terms of a modified Dean number. The compiled Nusselt number database of 176 data points for flows of water, air, and water–10% and 43.5% glycerol mixtures and additional 17 data points for flows of ethylene glycol, n-amyl alcohol, n-butanol, and n-amyl acetate, with higher Prandtl numbers of 15–175, is correlated in terms of the modified Reynolds number. The friction factor and Nusselt number correlations span the entire range of the data, and agree with the data to within ±20%. In addition, the experimental data of the critical Reynolds number are correlated to within ±10%. The developed correlations are compared to those reported previously. The comparison of the calculated results for a coiled tube and a straight tube, of the same diameter and total length, quantifies the relative heat transfer enhancement and increase in pressure losses. A review of the thermal development in toroidal and coiled tubes indicates that the value and the oscillatory behavior of the local Nusselt number depend on the angular location.  相似文献   

17.
In recent years, porous or solid insert has been used in a duct for enhancing heat transfer in high temperature thermal equipment, where both convective and radiative heat transfer play a major role. In the present work, the study of heat transfer enhancement is carried out for flow through a square duct with a porous or a solid insert. Most of the analyses are carried out for a porous insert. The hydrodynamically developing flow field is solved using the Navier–Stokes equation and the Darcy–Brinkman model is considered for solving the flow in the porous region. The radiative heat transfer is included in the analysis by coupling the radiative transfer equation to the energy equation. The fluid considered is CO2 with temperature dependent thermophysical properties. Both the fluid and the porous medium are considered as gray participating medium. The increase in heat transfer is analyzed by comparing the bulk mean temperature, Nusselt number, and radiative heat flux for different porous size and orientation, Reyonlds number, and Darcy number.  相似文献   

18.
Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements of the fins while keeping the fin’s surface area equal in each case.Comparative analysis has been presented to recognize the suitable fin arrangements that facilitate improved heat transfer and melting rate of the PCM.Left wall of the enclosure is maintained isothermal for the tempe...  相似文献   

19.
微胶囊相变悬浮液在空调系统中的应用前景   总被引:1,自引:0,他引:1  
赵兵全  赵镇南 《节能技术》2006,24(4):294-296
介绍了一种功能性热流体—微胶囊相变悬浮液,它的浓度为15%时,载冷能力是水的两倍多;处于湍流时,表现出非牛顿流体的特性,流动阻力小于水;浓度为20%时,层流对流换热的修正努塞尔数Nuc是单相流体的2~3倍,传热性能远优于单相流体。因此,微胶囊相变悬浮液应用于空调系统可大幅度提高换热器的传热性能和空调系统的运行效率,达到节能的效果。  相似文献   

20.
The design of efficient structures for heat and mass transfer problems involves the implementation of an appropriate topology optimization strategy in order to fully take into account the bi-objective nature of the problem. This article couples the finite-volume method (FVM), for the direct solver, with the discrete adjoint approach, for the sensitivity analysis, in order to tackle both fluid dynamic and heat transfer optimization in the frame of laminar flows. Details are provided about the sparsity pattern of the discrete adjoint system, which requires special attention to select a suitable matrix iterative solver. Several examples underline the adequacy of topology optimization in conjunction with the FVM for the minimization of the power dissipated by the fluid. Then, a bi-objective problem aiming at minimizing the pressure drop while maximizing the recoverable thermal power is solved by the identification of its Pareto frontier, thanks to an aggregate objective function (AOF) method. The main conclusion deals with the possibility of finding an acceptable trade-off between both objectives and the potential of topology optimization for heat and mass transfer optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号