首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cheol Huh  Moo Hwan Kim 《传热工程》2013,34(8-9):730-737
The boiling heat transfer and two-phase pressure drop of water in a microscale channel were experimentally investigated. The tested horizontal rectangular microchannel had a hydraulic diameter of 100 μ m and length of 40 mm. A series of microheaters provided heat energy to the working fluid, which made it possible to control and measure the local thermal conditions in the direction of the flow. Both the microchannel and microheaters were fabricated using a micro-electro-mechanical systems (MEMS) technique. Flow patterns were obtained from real-time flow visualizations made during the flow boiling experiments. Tests were performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes from 200 to 500 kW/m2. The effects of the mass flux and vapor quality on the local flow boiling heat transfer coefficient and two-phase frictional pressure gradient were studied. The evaluated experimental data were compared with existing correlations. The experimental heat transfer coefficients were nearly independent of the mass flux and vapor quality. Most of the existing correlations did not provide reliable heat transfer coefficient predictions for different vapor quality values, nor could they predict the two-phase frictional pressure gradient except under some limited conditions.  相似文献   

2.
Two-phase frictional pressure drop characteristics of R410A/POE oil mixture flow boiling inside a straight micro-fin tube with the outside diameter of 7.0 mm were investigated experimentally. Experimental parameters include the evaporation temperature of 5 °C, the mass flux from 200 to 400 kg/(m2 s), the heat flux from 7.56 to 15.12 kW/m2, the inlet vapor quality from 0.2 to 0.7, and nominal oil concentration from 0% to 5%. The test results show that frictional pressure drop of R410A/POE oil mixture increases with the mass flux, the presence of oil enhances two-phase frictional pressure drop, and the effect of oil on frictional pressure drop is more evident at higher vapor qualities where the local oil concentrations are higher. New correlations to predict the local frictional pressure drop of R410A/POE oil mixture flow boiling inside the straight micro-fin tube are developed based on local properties of refrigerant–oil mixture, and the measured local frictional pressure drop is well correlated with the empirical correlations proposed by the authors.  相似文献   

3.
ABSTRACT

This paper presents an experimental study on R1234yf flow boiling inside a mini microfin tube with an inner diameter at the fin tip of 2.4 mm. R1234yf is a new refrigerant with an extremely low global warming potential (GWP <1), proposed as a possible substitute for the common R134a, whose GWP is about 1300. The mass flux was varied between 375 and 940 kg m?2 s?1, heat flux from 10 to 50 kW m?2, and vapor quality from 0.1 to 1. The saturation temperature at the inlet of the test section was kept constant and equal to 30°C. The wide range of operative test conditions permitted highlighting the effects of mass flux, heat flux, and vapor quality on the thermal and hydraulic behavior during the flow boiling mechanism inside such a mini microfin tube. The results show that at low heat flux the phase-change process is mainly controlled by two-phase forced convection, and at high heat flux by nucleate boiling. The two-phase frictional pressure drop increases with increasing both mass velocity and vapor quality. Dry-out was observed only at the highest heat flux, at vapor qualities of around 0.94–0.95.  相似文献   

4.
Saturated flow boiling heat transfer and the associated frictional pressure drop of the ozone friendly refrigerant R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) flowing in a vertical plate heat exchanger (PHE) are investigated experimentally in the study. In the experiment two vertical counter flow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of saturated refrigerant R-410A in one channel receives heat from the downflow of hot water in the other channel. The experimental parameters in this study include the refrigerant R-410A mass flux ranging from 50 to 125 kg/m2 s and imposed heat flux from 5 to 35 kW/m2 for the system pressure fixed at 1.08, 1.25 and 1.44 MPa, which respectively correspond to the saturated temperatures of 10, 15 and 20 °C. The measured data showed that both the boiling heat transfer coefficient and frictional pressure drop increase almost linearly with the imposed heat flux. Furthermore, the refrigerant mass flux exhibits significant effect on the saturated flow boiling heat transfer coefficient only at higher imposed heat flux. For a rise of the refrigerant pressure from 1.08 to 1.44 MPa, the frictional pressure drops are found to be lower to a noticeable degree. However, the refrigerant pressure has very slight influences on the saturated flow boiling heat transfer coefficient. Finally, empirical correlations are proposed to correlate the present data for the saturated boiling heat transfer coefficients and friction factor in terms of the Boiling number and equivalent Reynolds number.  相似文献   

5.
In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study was to experimentally establish how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux, and vapor quality. The copper microchannel heat sink contains 21 microchannels with 335 × 930 μm2 cross section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate was measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux varied within 200–600 kg/m2-s, and pressure varied within 6–16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It showed that nucleate boiling is the dominant mechanism for heat transfer. A new model of flow boiling heat transfer, considering nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper.  相似文献   

6.
The pressure drop and boiling heat transfer characteristics of steam-water two-phase flow were studied in a small horizontal helically coiled tubing once-through steam generator. The generator was constructed of a 9-mm ID 1Cr18Ni9Ti stainless steel tube with 292-mm coil diameter and 30-mm pitch. Experiments were performed in a range of steam qualities up to 0.95, system pressure 0.5-3.5 MPa, mass flux 236-943 kg/m2s and heat flux 0-900 kW/m2. A new two-phase frictional pressure drop correlation was obtained from the experimental data using Chisholm’s B-coefficient method. The boiling heat transfer was found to be dependent on both of mass flux and heat flux. This implies that both the nucleation mechanism and the convection mechanism have the same importance to forced convective boiling heat transfer in a small horizontal helically coiled tube over the full range of steam qualities (pre-critical heat flux qualities of 0.1-0.9), which is different from the situations in larger helically coiled tube where the convection mechanism dominates at qualities typically >0.1. Traditional single parameter Lockhart-Martinelli type correlations failed to satisfactorily correlate present experimental data, and in this paper a new flow boiling heat transfer correlation was proposed to better correlate the experimental data.  相似文献   

7.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

8.
In this study, two new correlations are developed to predict pressure drop for the flow boiling in micro systems with low mass flux. The correlations developed rely on extensive experimental results. Experiments are conducted for flow boiling in nine different silicon multichannel heat sinks with deionized water. In the experiments, mass fluxes of 51–324 kg?m?2?s?1, wall heat fluxes of 36–121.8 kW?m?2, exit vapor qualities of 0.04–0.81, liquid-only Reynolds number of 20.3–89.4, aspect ratios of 0.37–5.00 and hydraulic diameters of 100–250 µm are tested. At first, validation tests for the single phase have been conducted. Then, some of the well-known existing correlations developed for the prediction of two phase pressure drop are used for comparison of the experimental results obtained. Finally, two new empirical correlations are developed for low mass flux conditions. The first one is for frictional pressure drop component, which is obtained by following a general procedure. The second one is for the prediction of total pressure drop (a dimensionless pressure drop correlation). The latter has been shown to predict better with an overall mean absolute error of 14.5% and, 87.8%, 94.8% and 96.5% of the predictions falling within ±30, ±40 and ±50% error bands, respectively.  相似文献   

9.
The pressure-drop characteristics during flow boiling in a single rectangular micro-channel with hydraulic diameter of 0.68 mm are presented. In the present study, pressure drop was studied at heat flux range of 7.63–49.46 kW/m2, mass flux range of 600–1400 kg/m2 s, and saturation temperature of 23, 27 and 31 °C. Experimental results indicated that the total pressure was dominated by frictional pressure drop. The increase of mass flux also increased the frictional pressure gradient, whereas the increase of saturation temperature reduced the frictional pressure gradient. In addition, heat flux also had an insignificant effect on the frictional the pressure gradient. A new correlation was also proposed for effective design of micro-channel heat exchanger.  相似文献   

10.
The present study illustrates new experimental two-phase flow pattern observations together with diabatic boiling and adiabatic two-phase frictional pressure drop results for ammonia (R717) flowing inside a 14-mm internal diameter, smooth horizontal stainless steel tube. The flow pattern observations were made for mass velocities of 50, 100 and 160 kg s?1 m?2 and saturation temperatures of ?14, ?2 and 12 °C for vapor qualities ranging from 0.05 to 0.6. The flow patterns observed during the study included: stratified-wavy, slug-stratified-wavy, slug, intermittent and annular. For all the experimental conditions, the flow structure observations were compared against the predictions of the flow pattern map model of Wojtan et al. [L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, Int. J. Heat Mass Transfer 48 (2005) 2955–2969] and showed very good correspondence. The frictional pressure drop measurements were obtained for vapor qualities from 0.05 to 0.6, saturation temperatures from ?14 to 14 °C, mass velocities from 50 to 160 kg s?1 m?2 and heat fluxes from 12 to 25 kW m?2. The experimental results show the traditional pressure drop trends: the frictional pressure drop increases with vapor quality and mass velocity. Moreover, the results also show that both diabatic and adiabatic frictional pressure drop values are similar, that is, the boiling process in itself does not affect the frictional pressure drop. The correlations of Friedel [L. Friedel, Improved friction drop correlations for horizontal and vertical two-phase pipe flow, in: European Two-Phase Flow Group Meeting, paper E2, Ispra, Italy, 1979], Lockhart and Martinelli [R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase two-component in pipes, Chem. Eng. Process 45 (1949) 39–48] and Müller-Steinhagen and Heck [H. Müller-Steinhagen, K. Heck, A simple friction pressure correlation for two-phase flow in pipes, Chem. Eng. Process 20 (1986) 297–308] predicted only 54%, 52% and 60% of the experimental data within ±30%, respectively. The correlation of Grönnerud [R. Grönnerud, Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type of evaporators, part iv: two-phase flow resistance in boiling refrigerans, in: Annexe 1972-1, Bull. de l’Inst. Froid, 1979] predicted 93% of the data and the flow pattern based method of Moreno Quibén and Thome [J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part II: new phenomenological model, Int. J. Heat Fluid Flow 28 (2007) 1060–1072] predicted more than 97% of the experimental data within the same error band, while the latter method captures almost 89% of the data within ±20%.  相似文献   

11.
A complete solution for boiling phenomena in smooth tubes has been giving as a procedure regarding with the calculation of convective heat transfer coefficient and pressure drop using accurate experimental data validated by flow regime maps and sight glasses on the experimental facility. The experimental study is conducted in order to investigate the effect of operating parameters on flow boiling convective heat transfer coefficient and pressure drop of R134a. The smooth tube having 8.62 mm inner diameter and 1100 mm length is used in the experiments. The effect of mass flux, saturation temperature and heat flux is researched in the range of 290–381 kg/m2 s, 15–22 °C and 10–15 kW/m2, respectively. The experiments revealed that the heat transfer coefficient and pressure drop are significantly affected by mass flux for all tested conditions. Moreover, the experimental results are compared with well-known heat transfer coefficient and frictional pressure drop correlations given in the literature. In addition, 122 number of heat transfer and pressure drop raw experimental data is given for researchers to validate their theoretical models.  相似文献   

12.
The characteristics of local heat transfer and pressure drops were experimentally investigated using condensing R134a two-phase flow, in single rectangular tubes, with hydraulic diameter of 0.494, 0.658, and 0.972 mm. New experimental techniques were used to measure the in-tube condensation heat transfer coefficient especially for the low heat and mass flows. Tests were performed for a mass flux of 100, 200, 400, and 600 kg/m2s, a heat flux of 5 to 20 kW/m2, and a saturation temperature of 40℃. In this study, effect of heat flux, mass flux, vapor qualities, and hydraulic diameter on flow condensation were investigated and the experimental local condensation heat transfer coefficients and frictional pressure drop are shown. The experimental data of condensation Nusselt number are compared with previous correlations, most of which are proposed for the condensation of pure refrigerant in a relatively large inner diameter round tubes.  相似文献   

13.
In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2~0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.  相似文献   

14.
An innovative cooling system based on evaporative CO2 two-phase flow is under investigation for the tracker detectors upgrade at CERN (European Organization for Nuclear Research). The radiation hardness and the excellent thermodynamic properties emphasize carbon dioxide as a cooling agent in the foreseen minichannels. A circular stainless steel tube in horizontal orientation with an inner diameter of 1.42 mm and a length of 0.3 m has been used as a test section to perform the step-wise scanning of the vapor quality in the entire two-phase region. To characterize the heat transfer and the pressure drop depending on the vapor quality in the tube, measurements have been performed by varying the mass flux from 300 to 600 kg/m2 s, the heat flux from 7.5 to 29.8 kW/m2 and the saturation temperature from ?40 to 0 °C (reduced pressures from 0.136 to 0.472). Heat transfer coefficients between 4 kW/m2 K and 28 kW/m2 K and pressure gradients up to 75 kPa/m were registered. The measured data was analyzed corresponding to the dependencies on heat flux, mass flux and saturation temperature. A database has been established containing about 2000 measurement points. The experimental data was compared with common models recently developed by Cheng et al. [1], [2] to cross check their applicability. The overall trends and experimental data were reproduced as predicted by the models before the dryout onset, and deviations have been analyzed. A modified friction factor for the pressure drop model [1] in mist flow has been proposed based on the experimental data.  相似文献   

15.
In this work flow visualizations and measurements are made and analyzed to identify flow regime transitions, slug-to-intermittent, intermittent-to-annular and the dry-out inception, during the flow boiling of CO2 in a horizontal smooth tube of 6.00 mm of internal diameter, varying the reduced pressure between 0.57 and 0.64, the mass velocity between 150 and 500 kg/m2 s and the heat flux between 5 and 20 kW/m2. Additional experiments for R410A show the effect of the reduced pressure over a wider range, from 0.19 to 0.52, varying the other operating parameters in the same ranges. All together, the new experimental dataset of 1420 observations and heat transfer measurements were utilized to determine the location of the flow pattern transitions, which showed a strong dependency of the vapor quality on the mass velocity for each transition line, for fixed reduced pressure. The dry-out inception line was influenced by the heat flux, as expected. The influence of the reduced pressure was also identified as an important parameter with a remarkable impact. This flow pattern database was then statistically compared with well established methods (Wojtan et al. (2005) [1] for R410A, Cheng et al. (2008) [2] for CO2) and recent methods [3], [4], showing poor agreement in the determination of the intermittent-to-annular flow regime transition for all the methods and in the prediction of the dry-out inception for all the methods, except for Wojtan et al. (2005) [1]. Finally, new easy-to-use correlations are proposed to provide better agreement with the experimental dataset and to explicitly illustrate the effect of the reduced pressure in an effort to generalize this diabatic flow pattern map for broader application.  相似文献   

16.
本文对CO_2在水平微细管内流动沸腾特性进行实验研究。实验结果表明:热流密度增加对强化核态沸腾换热和高干度区域流型转变具有显著影响,随着热流密度的增加换热系数增加,对摩擦压降影响很小;质量流率对于换热系数的影响较小,但随着质量流率的增加摩擦压降大幅增加,质量流率的大小直接决定了换热过程所经历流态;饱和温度升高换热系数相应升高,摩擦压降减小,且对流态转变特性有重要影响。在同样工况下摩擦压降最大值先于换热系数最大值出现,理论分析采用的流态形式与实际CO_2管内流动流动沸腾换热流态基本一致。  相似文献   

17.
ABSTRACT

In this study, subcooled flow boiling was investigated in horizontal microtubes. Experiments were conducted using deionized water as the working fluid over a mass flux range of 4000–7000 kg m?2s?1 in microtubes with inner and outer diameters of ~600 and ~900 μm, respectively. Microtubes with lengths of 3, 6, and 12 cm were tested to clarify the effect of heated length on flow boiling heat transfer and pressure drop characteristics. A force analysis related to two-phase flow was conducted to understand the effect of forces on bubble dynamics. Pressure drop and heat transfer data in flow boiling were acquired. Experimental heat flux data were compared with partial boiling heat flux correlations, and good agreements were obtained. Pressure drop was larger in longer microtubes in comparison to shorter ones, while higher heat fluxes were obtained in shorter microtubes at the same wall superheat. Two-phase heat transfer coefficient increased with the microtube length due to lower temperature difference between wall temperature and bulk fluid temperature in longer microtubes. Higher heat fluxes achieved in shorter microtubes at the same wall superheat imply higher critical heat fluxes in shorter microtubes.  相似文献   

18.
This paper describes an experimental setup for the investigation of two-phase heat transfer inside microchannels and reports local heat transfer coefficients measured during flow boiling of HFC-245fa in a 0.96-mm-diameter single circular channel. The test runs have been performed during vaporization at around 1.85 bar, corresponding to 31°C saturation temperature. As a peculiar characteristic of the present technique, the heat transfer coefficient is not measured by imposing the heat flux; instead, the boiling process is governed by controlling the inlet temperature of the heating secondary fluid. In the data, mass velocity ranges between 200 and 400 kg m?2 s?1, with heat flux varying from 5 to 85 kW m?2 and vapor quality from 0.05 up to 0.8. Since these data are not measured at uniform heat flux conditions, a proper analysis is performed to enlighten the influence of the different parameters and to compare the present data to those obtained when the heat flux is imposed. Besides, the test runs have been carried out in a double mode: by increasing the water-to-refrigerant temperature difference and by decreasing it. Finally, the experimental data are compared to models available in the literature for predicting the heat transfer coefficients inside microchannels.  相似文献   

19.
《Applied Thermal Engineering》2007,27(10):1715-1721
Experimental frictional pressure drop and heat transfer during single phase flow in a vertical mini-channel have been studied with the aim of determining the validity of classical correlations available for conventional size channels. A 1 mm square channel etched in a 420 mm long test section of aluminum has been investigated. The Reynolds number has been varied from 310 to 7780 in order to cover the laminar regime as well as the beginning of the turbulent regime. The heat flux supplied to the fluid varies from 1 kW/m2 to 8 kW/m2. Experimental frictional pressure drop measurements show that classical correlations accurately apply. Temperature measurements along the channel show that the temperature profile is drastically different from the expected linear behaviour owing to an important longitudinal heat flux in the channel wall. This heat flux mal-distribution which has been recently discussed in the literature is clearly shown and studied in more details by a numerical simulation of the experiment. This numerical work has allowed to make a correction on temperature measurements. Once corrected, the heat transfer measurements are in fair agreement with the classical literature results.  相似文献   

20.
ABSTRACT

Evaporators of small and medium refrigeration systems, as in commercial and automobile air conditioning applications, are being studied to develop more compact and lighter equipment, that reaches good thermal performance and reliability, with low pressure drop. In this way, evaporators are being designed with small channels and materials like aluminum. Moreover, different refrigerants are being tested to substitute for hydrofluorocarbon (HFC) refrigerants, with different operational temperatures and pressures. Some of them, like hydrocarbons, although they present advantages with respect to their thermodynamic and transport properties, should be used with small charge in the system due to their flammability. This work presents the results of an experimental study to characterize the flow boiling of the refrigerant R600a (isobutane) in a multiport aluminum extruded tube with 7 parallel minichannels of 1.47 mm hydraulic diameter. The effects of mass velocity, heat flux, and vapor quality on heat transfer were investigated for constant saturation temperature and pressure. Heat fluxes in the range from 5 to 30 kW m?2, mass velocities set to discrete values in the range of 50 to 200 kg m?2 s?1, and saturation temperature of 20°C were considered. It was verified a significant effect of heat flux. Moreover, some images of flow patterns, in different conditions, are presented, and the main patterns identified were slug, intermittent, and annular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号