首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A general correlation for heat transfer during film boiling in tubes is presented. It is based on the two-step model. It has been verified with data for nine fluids flowing up in tubes. The fluids include water, cryogens, refrigerants, and chemicals. The range of data includes pressures from 1 to 215 bar, reduced pressures from 0.0046 to 0.97, mass velocities from 4 to 5,176 kg/m² s, tube diameters from 1.1 to 24.3 mm, and qualities from 0.1 to 2.4. The 546 data points are predicted with a mean deviation of 15.2%. Deviation is defined as the difference between the measured and predicted heat transfer coefficients divided by the measured heat transfer coefficient, the heat transfer coefficients being based on the saturation temperature. Three other well-known correlations are also compared to the same data and found to have much larger deviations. The correlation is also compared with a limited amount of data from horizontal tubes; the results are encouraging.  相似文献   

2.
Hideo Mori 《传热工程》2016,37(7-8):686-695
For the development of a high-performance heat exchanger using small channels or minichannels for air-conditioning systems, it is necessary to clarify the characteristics of vapor‐liquid two-phase flow and heat transfer of refrigerants in small-diameter tubes. In this keynote paper, the related research works that have already been performed by the author and coworkers are introduced. Based on the observations and experiments of R410A flowing in small-diameter circular and noncircular tubes with hydraulic diameter of about 1 mm, the characteristics of vapor‐liquid two-phase flow pattern and boiling heat transfer were clarified. In low quality or mass flux and low heat flux condition, in which the flow was mainly slug, the “liquid film conduction evaporation” heat transfer peculiar to small-diameter tubes prevailed and exhibited considerably good heat transfer compared to nucleate boiling and forced convection evaporation heat transfer. The effects of the tube cross-sectional shape and flow direction on the heat transfer primarily appeared in the region of the “liquid film conduction evaporation” heat transfer. A new heat transfer correlation considering all of three contributions has been developed for small circular tubes.  相似文献   

3.
强化管内沸腾换热实验研究   总被引:2,自引:0,他引:2  
主要研究在低过热度下微槽对流动沸腾换热特性的影响,分别以单工质甲醇和甲醇与甲苯的混合物为工质对不同流量情况下光管、直槽管和螺旋槽管的流动沸腾换热特性进行了实验研究。研究结果表明:对单工质甲醇来说,螺旋槽管可以明显起到强化传热作用,而且流量越低,强化传热效果越明显。对混合工质来说,当流量较低时,螺旋槽管强化传热效果不明显,而在流量较高时,强化传热效果比较明显。无论是单工质还是混合工质,直槽管在实验所能达到的壁面温度条件下不能起到明显的强化传热效果。还给出了螺旋槽管强化传热的定性解释。  相似文献   

4.
基于以丙酮为工质的三角形截面微通道饱和沸腾传热的实验数据,通过最小二乘法对实验数据进行参数拟合,得到一组新的经验参数,结合Thome提出的预测圆形截面微通道饱和沸腾传热系数的三区模型,对微通道饱和沸腾的传热系数进行了预测。结果表明:该三区模型可以较好地预测出传热系数随着干度的变化趋势,并得到90.04%的实验值和预测值误差在30%之内,吻合度较好。  相似文献   

5.
Experimental single-phase, condensation and flow boiling heat transfer data from the literature and our previous studies were collected to evaluate existing heat transfer correlations for microfin tubes of different geometries. The Ravigururajan and Bergles correlation modified by using the hydraulic diameter proposed by Li et al. (2012) can predict single-phase heat transfer data relatively well. Among the four reviewed condensation heat transfer correlations, the Yu and Koyama (1998) correlation presents the best prediction. However, all the four condensation correlations are prone to overpredict the carbon dioxide data. For flow boiling in microfin tubes, the general semiempirical correlation developed by Wu et al. (2013), applicable for intermittent and annular flow patterns, is the most reliable predictive method among the five evaluated correlations. It can predict 90% of the overall 754 data points within a ±30% error band, with a mean absolute deviation and a standard deviation equal to 18.2% and 21.9%, respectively, covering pure halogenated refrigerants, near azeotropic refrigerant mixtures, and carbon dioxide with the following applicable range: fin root diameter 2.1 to 14.8 mm, mass flux 100 to 800 kg/m2s, heat flux 4.5 to 59 kW/m2, and reduced pressure 0.07 to 0.7.  相似文献   

6.
An overview of the recent developments in the study of flow patterns and boiling heat transfer in small to micro diameter tubes is presented. The latest results of a long-term study of flow boiling of R134a in five vertical stainless-steel tubes of internal diameter 4.26, 2.88, 2.01, 1.1, and 0.52 mm are then discussed. During these experiments, the mass flux was varied from 100 to 700 kg/m2s and the heat flux from as low as 1.6 to 135 kW/m2. Five different pressures were studied, namely, 6, 8, 10, 12, and 14 bar. The flow regimes were observed at a glass section located directly at the exit of the heated test section. The range of diameters was chosen to investigate thresholds for macro, small, or micro tube characteristics. The heat transfer coefficients in tubes ranging from 4.26 mm down to 1.1 mm increased with heat flux and system pressure, but did not change with vapor quality for low quality values. At higher quality, the heat transfer coefficients decreased with increasing quality, indicating local transient dry-out, instead of increasing as expected in macro tubes. There was no significant difference between the characteristics and magnitude of the heat transfer coefficients in the 4.26 mm and 2.88 mm tubes but the coefficients in the 2.01 and 1.1 mm tubes were higher. Confined bubble flow was first observed in the 2.01 mm tube, which suggests that this size might be considered as a critical diameter to distinguish small from macro tubes. Further differences have now been observed in the 0.52 mm tube: A transitional wavy flow appeared over a significant range of quality/heat flux and dispersed flow was not observed. The heat transfer characteristics were also different from those in the larger tubes. The data fell into two groups that exhibited different influences of heat flux below and above a heat flux threshold. These differences, in both flow patterns and heat transfer, indicate a possible second change from small to micro behavior at diameters less than 1 mm for R134a.  相似文献   

7.
In order to examine the effect of surface inclination angle on saturated pool film boiling heat transfer in transient regime, an experimental study was carried out. The experiments were performed through a cylindrical rod, made up of brass 20 mm in diameter and 75 mm in length, placed at six inclination angles about the vertical (from 0 to 50°) under atmospheric pressure. The test specimen heated at high temperatures was immersed in a distilled water pool at saturated condition. Temperature of the specimen during the cooling process was recorded using a K-type thermocouple embedded at the center of the specimen. In the experiments, the pool film boiling was observed for each inclination angle. In the film boiling region, the heat transfer coefficients were calculated by means of a lumped parameter method. The experimental results showed that the heat transfer coefficient increased as the inclination angle increased. In addition, to predict the Nusselt number, an empirical formula including the inclination angle as well as the Grashof, Prandtl, and Jakob numbers was developed, and good agreement between the predicted and experimental data for the vapor Nusselt numbers was observed.  相似文献   

8.
Q. S. Liu  K. Fukuda  M. Shiotsu 《传热工程》2013,34(11-12):996-1002
The knowledge of subcooled film boiling heat transfer is important as the basis of understanding the reflooding phenomenon during emergency cooling in a nuclear reactor under a loss-of-coolant accident. In this study, forced convection film boiling heat transfer from a vertical cylinder in Freon-113 flowing upward along the cylinder was measured for the flow velocities ranging from 0 to 1.3 m/s, and liquid subcoolings ranging from 0 to 20 K at pressures near atmospheric. A platinum heater with a diameter of 3 mm was heated by electric current. The heat transfer coefficients obtained are almost independent of vertical positions on the cylinder. The heat transfer coefficients are almost independent of velocity for the velocities lower than about 1 m/s and become higher for the velocities higher than 1 m/s. The heat transfer coefficients at each velocity are higher for higher liquid subcoolings. Improvement of film boiling heat transfer from the vertical cylinder with the increase in flow velocity is much less than that of horizontal cylinder in cross flow previously reported by the authors. This is mainly due to the difference of heat transfer enhancement mechanism; the former is the drag force on vapor flow acted by a liquid flow, and the latter is the pressure gradient near the front stagnation point caused by external potential flow.  相似文献   

9.
在流动传热基础试验平台上进行了矩形通道干涸后膜态沸腾的传热试验,研究了各种热工水力参数对膜态沸腾传热的影响特性.结果表明:干涸后膜态沸腾是一个相对稳定的传热过程,其壁面温度不会出现明显的脉动;随着进口含汽率的增加,膜态沸腾热流密度减小,壁面温度升高,传热系数减小;随着质量流速的增大或系统压力的升高,膜态沸腾热流密度增大,壁面温度降低,传热系数增大.  相似文献   

10.
Burak Markal  Mete Avci 《传热工程》2017,38(16):1415-1428
This study focuses mainly on the prediction of saturated flow boiling heat transfer in microchannels. A wide range of experiments has been carried out with de-ionized water to obtain a comprehensive data set. Experiments of mass fluxes of 51–728.7 kg/m2s, wall heat fluxes of 36–221.7 kW/m2, vapor qualities of 0.01–0.69, liquid Reynolds number of 7.72–190, aspect ratios of 0.37–5.00 (with a constant hydraulic diameter of 100 µm) and hydraulic diameters of 100–250 µm (for constant aspect ratio = 1). A new correlation including the aspect ratio effect is proposed to predict the heat transfer coefficient for saturated flow boiling in microchannels. The proposed correlation shows very good predictions with an overall mean absolute error of 16.9% and 86.4%, 96.2% and 99.5% of the predicted data falling within ±30, ±40 and ±50% error bands, respectively.  相似文献   

11.
INTaoDUCTIONReclitlydry-troeeVaPoratorofairconditioningmaChineandreffigeratorhavebeendevefoPinginthedirectionofusingsmalldiamtertube.TheHITACHICo.conductedaserlesofeVaPoratfonhe8ttransferexperimeats,usingthethinwallcoppertubesofinnerdiamter9.52nun,8mm,7mmand5nunre-spectivelytheworkingmediawasHCFC22(qualityx=o.6)I'].TheresulthasshoWnthatheeVaPo-rationheattransfercoefficielltsweresghcatlyincreasedwiththedecreasingoftubediameter.EVaThorationheattransfercoefficientofa5.onuninnerdiare…  相似文献   

12.
P. J. MARTO 《传热工程》2013,34(3-4):53-63
An assessment of several promising techniques that use surface tension forces to enhance film condensation heat transfer on horizontal tubes is made. Recent progress on integral-fin tubes is stressed, including experimental findings on fin spacing, geometry, and material and the latest theoretical developments for predicting performance. Condensation heat transfer enhancement on wire-wrapped tubes is also examined, as well as the use of nonwetting strips and porous drainage devices. The effect of condensate inundation on plain and enhanced tubes is reviewed briefly, and future research directions are discussed.  相似文献   

13.
Two-phase flow heat transfer has been exhaustively studied in recent years. However, in this field, several questions remain unanswered. Heat transfer coefficient prediction related to nucleate and convective boiling has been studied using different approaches—numerical, analytical, and experimental. In this study, an experimental analysis, data representation, and heat transfer coefficient prediction of two-phase heat transfer in nucleate and convective boiling are presented. An empirical correlation is obtained, based on a genetic algorithms search engine, of a dimensional analysis of the two-phase flow heat transfer problem.  相似文献   

14.
ABSTRACT

The paper presents thermal and flow analyses of the boiling process of R507, R410 and R407 C refrigerants inside vertical tubes (21 mm) with coiled-wire inserts and various coil diameters (20; 20.5 mm), coil pitches (26; 44 mm) and wire diameters (1.5; 2 mm). The study differs from other publications as regards the conditions under which the experiment was conducted. It focuses on the boiling process in two long vertical tube sections (2 m), paired in an in-line arrangement. The study was conducted within a moderate range of mass flux densities 80–240 kgm?2s?1 and at low heat flux densities 5–11 kWm?2, corresponding to the operating conditions of air coolers. The study examined the influence of vapour quality, mass flux density, geometrical parameters of the inserts and the impact of temperature glide on heat transfer coefficient and flow resistance increases as compared with a plain tube. The obtained increase ratios of heat transfer coefficients amounted to 1.1-1.7 for an azeotropic agent and to 1.1-1.3 for zeotropic agents, with the relative increase in flow resistances amounting to 1.8-4.5. New equations are proposed in the paper for the calculation of heat transfer coefficient and flow resistance values for boiling inside vertical tubes with spiral inserts.  相似文献   

15.
Remarkably different behaviors are found when comparing micro-scale flow boiling heat transfer data by distinct authors, even under similar experimental conditions. Such differences are almost certainly related to the complexity of confined forced-flow boiling. Certain aspects of the phenomenon, which are negligible in the macro-scale, become surprisingly relevant when the system size becomes small. From the results reported in the literature on the thermal-fluid features of evaporating flows in small channels, the following study presents a discussion concerning convective boiling heat transfer, highlighting the aspects that are characteristic to confined two-phase flows.  相似文献   

16.
A large number of studies of bubble growth rate and departure diameter have been reported in the literature. Because of uncertainty in defining the shape of an evolving interface, empirical constants are invariably used to match the model predictions with data. This is especially true when force balance is made on a vapor bubble to determine the departure diameter. In this paper, the results of an alternate approach based on a complete numerical simulation of the process are given. Single and multiple bubbles are considered for both pool and flow boiling. The simulations are based on the solution of the conservation equations of mass, momentum, and energy for both phases. Interface shape is captured through a level set function. A comparison of bubble shape during evolution, bubble diameter at departure, and bubble growth period is made with data from well-controlled experiments. Among other variables, the effect of magnitude of gravity and contact angle is explicitly investigated.  相似文献   

17.
This article presents a study of flow boiling of R123 in two small-diameter silver tubes with inner diameters of 1.15 mm and 2.3 mm. The experiments have been accomplished for a wide range of quality variation (0.01–0.9), mass flow rate (650–3000 kg/m2s), and heat fluxes (40–80 kW/m2). The saturation temperature ranged from 30 to 70°C. In the experiments a peculiar distribution of heat transfer coefficient leading to development of two maxima in its distribution with respect to quality has been observed. Such behavior was seen in both sizes of tubes.  相似文献   

18.
Cheol Huh  Moo Hwan Kim 《传热工程》2013,34(8-9):730-737
The boiling heat transfer and two-phase pressure drop of water in a microscale channel were experimentally investigated. The tested horizontal rectangular microchannel had a hydraulic diameter of 100 μ m and length of 40 mm. A series of microheaters provided heat energy to the working fluid, which made it possible to control and measure the local thermal conditions in the direction of the flow. Both the microchannel and microheaters were fabricated using a micro-electro-mechanical systems (MEMS) technique. Flow patterns were obtained from real-time flow visualizations made during the flow boiling experiments. Tests were performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes from 200 to 500 kW/m2. The effects of the mass flux and vapor quality on the local flow boiling heat transfer coefficient and two-phase frictional pressure gradient were studied. The evaluated experimental data were compared with existing correlations. The experimental heat transfer coefficients were nearly independent of the mass flux and vapor quality. Most of the existing correlations did not provide reliable heat transfer coefficient predictions for different vapor quality values, nor could they predict the two-phase frictional pressure gradient except under some limited conditions.  相似文献   

19.
采用格子玻尔兹曼方法模拟高低热导率相间表面的饱和池沸腾过程,研究不同表面高低热导率区域热导率比值、低热导率区域宽度和深度对沸腾换热性能的影响。对比均匀热导率表面与高低热导率相间表面的沸腾曲线发现:高低热导率相间表面的沸腾过程可被分为5个阶段,并且其临界热流密度最高可达均匀表面的12倍;高低热导率相间可促使表面维持一定的温度差异,从而保持明显的气液流动;随着低热导率区域宽度增大,气液分离更加明显,低热导率区域宽度存在一个最优值,其与毛细长度的量级接近;随着低热导率区域的深度增大,表面过热度的差异更加明显。  相似文献   

20.
NucleatePoolBoilingofPureLiquidsandBinaryMixtures:PartI-AnalyticalModelforBoilingHeatTransferofPureLiquidsonSmoothTubesGuoqin...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号