首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of reducing dimensions to microscale on the performance parameters of parallel flow tubular micro heat exchanger is numerically analyzed considering the thermophysical property variation effect. Also, the improvement in convective heat transfer coefficient, at a given temperature, with the decrease in dimensions to microscale is investigated. In the micro heat exchanger, conventional method fails to give accurate performance analysis due to significant property variation. So, a new temperature difference, i.e. mean temperature difference correlation considering the property variation effect is derived. Operating conditions and geometric parameters are varied, keeping the inlet temperature of the both fluids and inlet velocity of the cold fluid fixed. The following performance parameters are evaluated: effectiveness, volumetric heat transfer coefficient, mean temperature difference, and log mean temperature difference. The reliability of the new mean temperature difference method is checked by calculating the percentage deviation between mean temperature difference and log mean temperature difference value for macroscale to microscale heat transfer. The results show that percentage deviation is maximum at microscale.  相似文献   

2.
The paper presents numerical investigations of a three fluid heat exchanger (TFHE), which is an improvement on the double pipe heat exchanger, where a helical tube is inserted in the annular space between two straight pipes. The helical tube side fluid, that is, hot water continuously transfers heat to the outer annulus side fluid and innermost tube side fluid. The heat transfer and pressure drop characteristics of the TFHE are assessed for different flow rates and inlet temperatures. With an increment in the volumetric flow rate of the helical tube side fluid and outer annulus side fluid, the overall heat transfer coefficient increases, and the effectiveness decreases for heat transfer from the helical tube side fluid to outer annulus side fluid in both parallel flow and counter flow configurations. It is also observed that with increment in the helical tube side fluid inlet temperature, the overall heat transfer coefficient and effectiveness increases for heat transfer from the helical tube side fluid to outer annulus side fluid in both flow configurations. The parameter, JF factor, has been proposed to evaluate the thermohydraulic behavior of the TFHE, where it is obtained that the behavior of the TFHE is better at a lower helical tube side fluid velocity and higher outer annulus side fluid velocity.  相似文献   

3.
文中运用推导逆流换热器对数平均温度的方法,得到了板式换热器中冷热流体及板上的温度分布.在此基础上运用火用传递理论,推导出了热流体至板、板至冷流体的局部火用传递系数.以某板式换热器为例进行了算例分析,从火用传递角度分析了该换热器的换热性能,此结果可以作为对板式换热器进行优化和改进的一种可行有效的重要参考.  相似文献   

4.
Heat exchangers are extensively used in various industries. In this study, the impact of geometric and flow parameters on the performance of a shell and double helical coil heat exchanger is studied numerically. The investigated geometric parameters include external coil pitch, internal coil pitch, internal coil diameter, and coil diameter. The influences of considered geometrical parameters are analyzed on the output temperature of the hot and cold fluid, convective heat transfer coefficient, pressure drop, and average Nusselt number. Water is considered as working fluid in both shell and tube. As an innovation, double helical coils are used instead of one in the heat exchanger. To compare the obtained results accurately, in each section, the heat transfer area (coil outer surface) is kept constant in all models. The results show that the geometrical parameters of double helical coils significantly affect the heat transfer rate.  相似文献   

5.
Bayonet tubes are frequently used for heat removal in fluidized bed coal combustors and gasifiers. They consist of two coaxial tubes, through which the cooling fluid flows; first through the inner tube, and then back through the annulus, or vice versa. Such a flow arrangement creates obvious difficulties in defining a characteristic temperature difference to which the heat transfer rate can be related, and on the basis of which the heat transfer coefficient between the bed and the tube can be evaluated. A bayonet tube-fluidized bed system is mathematically modelled here, and an analytical scheme is presented for the calculation of the bed-tube heat transfer coefficient. A characteristic temperature difference (CTD) is defined which reduces to the familiar logarithmic mean temperature difference (LMTD) for a particular case. A set of curves is presented relating the CTD with the LMTD.  相似文献   

6.
This study investigates passive heat transfer enhancement techniques to determine the distribution of temperature and static pressure in test tubes, the friction factor, the heat flux, the temperature difference between the inlet and outlet fluid temperatures, the pressure drop penalty and the numerical convective heat transfer coefficient, and then compares the results to the experimental data of Zdaniuk et al. It predicts the single-phase friction factors for the smooth and enhanced tubes by means of the empirical correlations of Blasius and Zdaniuk et al. This study performed calculations on a smooth tube and two helically finned tubes with different geometric parameters also used in the analyses of Zdaniuk et al. It also performed calculations on two corrugated tubes in the simulation study. In Zdaniuk et al.'s experimental setup, the horizontal test section was a 2.74 m long countercurrent flow double tube heat exchanger with the fluid of water flowing in the inner copper tube (15.57–15.64 mm i.d.) and cooling water flowing in the annulus (31.75 mm i.d.). Their test runs were performed at a temperature around 20 °C for cold water flowing in the annulus while Reynolds numbers ranged from 12,000 to 57,000 for the water flowing in the inner tube. A single-phase numerical model having three-dimensional equations is employed with either constant or temperature dependent properties to study the hydrodynamics and thermal behaviors of the flow. The temperature contours are presented for inlet, outlet and fully developed regions of the tube. The variations of the fluid temperature and static pressure along tube length are shown in the paper. The results obtained from a numerical analysis for the helically tubes were validated by various friction factor correlations, such as those found by Blasius and Zdaniuk et al. Then, numerical results were obtained for the two corrugated tubes as a simulation study. The present study found that the average deviation is less than 5% for the friction factors obtained by the Fluent CFD program while Blasius's correlation has the average deviation of less than 10%. The corrugated tubes have a higher heat transfer coefficient than smooth tubes but a lower coefficient than helically finned tubes. The paper also investigates the pressure drop penalty for the heat transfer enhancement.  相似文献   

7.
Fouling is one of the main problems of heat transfer which can be described as the accumulation on the heat exchanger tubes, i.e.; ash deposits on the heat exchanger unit of the boiler. A decrease in heat transfer rate by this deposition causes loss in system efficiency and leads to increasing in operating and maintenance costs. This problem concerns with the coupling among conduction heat transfer mode between solid of different types, conjugate heat transfer at the interface of solid and fluid, and the conduction/convection heat transfer mode in the fluid which can not be solved analytically. In this paper, fouling effect on heat transfer around a cylinder in cross flow has been studied numerically by using conjugate heat transfer approach. Unlike other numerical techniques in existing literatures, an unstructured control volume finite element method (CVFEM) has been developed in this present work. The study deals with laminar flow where the Reynolds number is limited in the range that the flow field over the cylinder is laminar and steady. We concern the fouling shape as an eccentric annulus with constant thermal properties. The local heat transfer coefficient, temperature distribution and mean heat transfer coefficient along the fouling surface are given for concentric and eccentric cases. From the results, we have found that the heat transfer rate of cross-flow heat exchanger depends on the eccentricity and thermal conductivity ratio between the fouling material and fluid. The effect of eccentric is dominant in the region near the front stagnation point due to high temperature and velocity gradients. The mean Nusselt number varies in asymptotic fashion with the thermal conductivity ratio. Fluid Prandtl number has a prominent effect on the distribution of local Nusselt number and the temperature along the fouling surface.  相似文献   

8.
In carbon dioxide transcritical air‐conditioning and heat pump systems, the high‐pressure‐side heat exchanger operating at supercritical pressures is usually called as gas cooler. The carbon dioxide gas cooler displays much difference from the traditional heat exchangers employing constant property fluids. The commonly used logarithmic mean temperature difference (LMTD) and effectiveness—heat transfer unit (ε‐NTU) fail for the gas cooler design calculation as the carbon dioxide properties change sharply near the critical or pseudo‐critical point in the heat transfer processes. The new effective heat transfer temperature difference expression for variable fluid property derived by the authors is verified by numeric simulation of the carbon dioxide gas cooler. Moreover, the available correlated models for the cooled carbon dioxide supercritical heat transfer are used to simulate the gas cooler. Detail analysis is made for the deviations among the different models, and for the distributions of local convective coefficient, heat flux, and local temperature of carbon dioxide along the flow path in the gas cooler. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Although the determination of heat exchanger performance based on the log-mean-temperature-difference approach or the temperature effectiveness approach had been well established, the understanding of the fluid temperature variation along the heat exchanger was still essential in some situations in which the fluid properties were expected to vary substantially across the heat exchanger. In this study, two normalized temperature surpluses were employed to predict the temperature profiles of the hot and cold fluid streams. With specified capacitance rates for the hot and cold fluid streams and the overall heat transfer value of the heat exchanger, unified profiles for the normalized temperature surplus along the heat exchanger could be formulated irrespective of the actual fluid entering temperature. The differences between the mean normalized temperature surplus and that based on the arithmetic mean between the fluid inlet and outlet increased when the capacitance rates of the two fluid streams departed more. By comparing the simulated performances of a sample waste heat recuperator based on both mean-temperature approaches to evaluate the respective average fluid properties with those using a detailed numerical approach over a range of entering fluid temperatures, it was found that the mean normalized temperature surplus was better.  相似文献   

10.
板式换热器性能的数值模拟   总被引:1,自引:1,他引:0  
建立了人字形板式换热器冷热双流道的流体流动与传热计算模型,利用计算流体力学软件对5组不同速度工况下换热器内流体的流动和传热进行了数值模拟,分析了换热器流道内的速度场、温度场和压力场.结果表明:数值模拟得到的板式换热器进、出口温差和压降与试验测量值的误差均小于6%;换热器内流体的流动和传热存在明显的不均匀性,导致其进、出口的另一侧出现明显的传热"死区";换热器的总传热系数和流道阻力均随着流体流速的增大而增大.  相似文献   

11.
The dynamic simulation of an integrated, double pipe heat exchanger network was validated through experimentation. A steam–water, concentric tube, heat exchanger was coupled to a water–water preheater. When the preheater was configured for cocurrent flow with equal fluid velocities in its annulus and core, Lagrangian-based derivations yielded analytical solutions that accurately predicted observed temperature dynamics. When the preheater was configured for countercurrent flow with distinct fluid velocities in its annulus and core, analytical solutions for the heater and connecting tubing were coupled with Eulerian based numerical solutions for the preheater. Programming used Mathcad. Nonlinear regression analysis of steady state data was used to determine system parameters. The significance of time delays through the integration of unit operations is illustrated.  相似文献   

12.
A mathematical model is developed to study the performance of a parallel-flow heat exchanger in which both fluid streams are interacting thermally with the surroundings. The fluid temperatures are found to be dependent on the magnitude of the ambient temperature relative to fluid inlet temperatures, the ratios of conductances between the fluids and the ambient and the interfluid conductance, the ratio of minimum to maximum fluid capacities, and the number of transfer units, NTU, for the heat exchanger. Two heat exchanger effectiveness criteria, one each for the hot and cold fluids, are used to study performance. The effectiveness is found to be adversely affected by increasing conductance ratios, increasing NTU, and increasing temperature difference between the ambient and the fluid of interest. For very high values of the conductance ratios, the heat exchanger will not perform as expected and both fluid temperatures will approach that of the ambient. The parallel-flow arrangement is compared to counterflow and is found to be less effective under the external heat transfer condition.  相似文献   

13.
This article analyzes the effect of external heat transfer on the thermal performance of counterflow microchannel heat exchangers. Equations for predicting the axial temperature and the effectiveness of both fluids as well as the heat transferred between the fluids, while operating under external heating or cooling conditions, are provided in this article. External heating may decrease and increase the effectiveness of the hot and cold fluids, respectively. External cooling may improve and degrade the effectiveness of the hot and cold fluids, respectively. For unbalanced flows, the thermal performance of the microchannel heat exchanger subjected to external heat transfer depends on the fluid with the lowest heat capacity. At a particular number of transfer units (NTU), the effectiveness of both the fluids increased with decrease in heat capacity ratio when the hot fluid had the lowest heat capacity. When the cold fluid had the lowest heat capacity, the effectiveness of both fluids increased with decrease in heat capacity ratio at low values of NTU but at high values of NTU the effectiveness increased with increase in heat capacity ratio. A term called the “performance factor” has been introduced in this article to assess the relative change in effectiveness due to external heat transfer.  相似文献   

14.
Sumit Sharma 《传热工程》2017,38(16):1404-1414
This paper is aimed at comprehensive investigations of the thermal performance of parallel plate and rectangular microchannel counter flow heat exchangers based on axial conduction, number of transfer units, and non-dimensional power density. The geometrical parameters of the two configurations are optimized for a given heat transfer rate, effectiveness, and pressure drop. A reduced order model of rectangular micro channel counter flow heat exchanger is developed in which it is transformed into a hydrodynamically and thermally equivalent parallel plate micro heat exchanger. To improve the accuracy of the model, correction factors obtained from detailed computational fluid dynamics model are introduced. Various factors affecting the dimensionless power density of both the counter flow micro heat exchangers are studied. It is found that the axial conduction plays an important role on the performance of rectangular channel counter flow micro heat exchanger. In the limiting case where the channel aspect ratio tends to zero, the dimensionless power density of rectangular channel is found to approach that of a parallel plate counter flow micro heat exchanger.  相似文献   

15.
The air-side heat transfer and flow characteristics of cross-flow multiport slab mesochannel heat exchanger are investigated experimentally in this article. The multiport slab mesochannel heat exchanger consists of 15 finned aluminum slabs; each slab contains 68 flow channels of 1 mm circular diameter. The cold deionized water at a constant mass flow rate was forced to flow through the mesochannels, whereas the hot air at different velocities was allowed to pass through the finned passages of the heat exchanger core in cross-flow orientation. The heat transfer and fluid flow key parameters were examined in the region of the air-side Reynolds number in the range of 972–2758, with a constant water-side Reynolds number of 135. The effect of air-side Reynolds number on air-side Nusselt number was examined and a general correlation of Nusselt number with Reynolds number was obtained. The Nusselt number value was found to be higher in comparison with other research works for the corresponding Reynolds number range. The multiport mesochannel flat slab geometry has offered uniform temperature distribution into the core. This uniform temperature distribution leads to higher heat transfer over stand-alone inline flow tube bank.  相似文献   

16.
Hydrogen/helium heat exchanger is a kind of heat exchanger dedicated to SABRE (Synergetic Air-breathing and Rocket Engine). Its special working environment and operating condition have brought a great challenge to its design. Hydrogen/helium heat exchanger with micro-channel/plate heat exchanger as its configuration is taken as the research object in this paper. Mathematical model of the heat exchanger is set up based on logarithmic mean temperature difference method, and the parameters that affect the heat transfer performance of heat exchanger is analyzed. The results showed that, reducing the thickness of fin or plate can help reduce the pressure loss of working fluids, the length and weight of hydrogen/helium heat exchanger. Reducing the width of micro-channel can reduce the length of heat exchanger and increase the height of heat exchanger. Reducing the height of micro-channel can reduce the length and height of heat exchanger. As a whole, the pressure loss of working fluids shows a trend of decreasing at first and then rising with the height or width of micro-channel rising. The pressure loss of helium is much greater than that of hydrogen, which means the pressure loss of helium is more sensitive to geometric parameters of heat exchanger and should be well controlled. In order to gain the best performance of the heat exchanger, the geometric parameters of heat exchanger is designed by Artificial Fish Swarm Algorithm.  相似文献   

17.
This paper reports the use of Markov Chain Monte Carlo (MCMC) and Metropolis Hastings (MH) approach, to solve an inverse heat transfer problem. Three-dimensional, steady state, conjugate heat transfer from a Teflon cylinder of dimensions 100 mm diameter and 100 mm length with uniform volumetric internal heat generation is considered. The goal is to estimate volumetric heat generation and heat transfer coefficient, given the temperature data at certain fixed location on the surface of the cylinder. The internal volumetric heat generation is specified as input and the temperature and heat transfer coefficient values are obtained by a numerical solution to the governing equation. The temperature values also depend on heat transfer coefficient which is obtained by solving Navier–Stokes equation to obtain flow information. In order to reduce the computational cost, a neural network is trained from the computational fluid dynamics simulations. This is posed as an inverse problem wherein volumetric heat generation and heat transfer coefficient are unknown but the temperature data is known by conducting experiments. The novelty of the paper is the simultaneous determination of volumetric heat generation and heat transfer coefficient for the experimentally measured steady-state temperatures from a Teflon cylinder using MCMC-MH as an inverse model in a Bayesian framework and finally, the estimates are reported in terms of mean, maximum a posteriori, and the standard deviation which is the uncertainty associated with the estimated parameters.  相似文献   

18.
In this paper, an experimental study of the condensation of water vapor from a binary mixture of air and low‐grade steam has been depicted. The study is based upon diffusion heat transfer in the presence of high concentration of noncondensable gas. To simplify the study, experimental analysis is supported by empirical solutions. The experimental setup is custom designed for testing a new shell and tube type heat exchanger supplied by the manufacturer. Air–vapor mixture at 80 °C (max) and 20.2% relative humidity enters the heat exchanger at a mass flow rate of 480 kg/h and condenses 27 kg/h vapor using cooling water at an inlet temperature of 7 °C to 10 °C and mass flow rate of 3500 kg/h. By using the experimental data of constant inlet air mass fraction, mixture gas velocity, and different volumetric flow rate of the cold fluid, the local heat transfer coefficients are obtained. The main objective of this work is to establish an approximate value for surface area and overall heat transfer coefficient of a horizontal shell and tube condenser used in process space. Under designed working conditions, the condenser is found to work efficiently with 90% vapor condensation by mass.  相似文献   

19.
《Applied Thermal Engineering》2007,27(5-6):877-885
A theoretical model that predicts the thermal and fluidic characteristics of a micro cross-flow heat exchanger is developed in this study. The theoretical model is validated by comparing the theoretical solutions with the experimental data from the relative literature. This model describes the interactive effect between the effectiveness and pressure drop in the micro heat exchanger. The analytical results show that the average temperature of the hot and cold side flow significantly affects the heat transfer rate and the pressure drop at the same effectiveness. Different effectiveness has a great influence upon the heat transfer rate and pressure drop. When the micro heat exchanger material is changed from silicon to copper, the thermal conductivity changes from 148 to 400 W/m K. The heat exchanger efficiency is also similar. Therefore, the (1 1 0) orientation silicon based micro heat exchanger made using the MEMS fabrication process is feasible and efficient. Furthermore, the dimensions effect has a great influence upon the relationship between the heat transfer rate and pressure drop. Therefore, the methodology presented in this paper can be used to design a micro cross-flow heat exchanger.  相似文献   

20.
In typical heat exchanger design methods it is generally assumed that the overall heat transfer coefficient is constant and uniform; however, the heat transfer coefficients on the hot and cold sides of the heat exchanger may vary with flow Reynolds number, surface geometries, fluid thermophysical properties, and other factors. In this article we present simple analytical and numerical methods for calculating heat transfer area for data sets introduced earlier in the literature. For the analytical methods presented in the article, the variation in the overall heat transfer coefficient with the local hot and cold fluid temperature difference is expressed as a power-law model and as a general polynomial model. The procedure for calculating the heat transfer area with the power-law model is explained with respect to a simple closed-form solution, while the polynomial model can also provide an analytical solution that seems to be quite accurate for the data sets examined. It is also shown that a Chebyshev numerical integration scheme that requires four points compared to the Simpson method of three points is quite accurate (within 1% of the exact value).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号