首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
全固态锂离子电池相较于液态电池而言,其能量密度更高,安全性更好,符合未来锂离子电池的发展方向,而固体电解质是该类型电池的关键组件。其中,石榴石型电解质锂镧锆氧(Li7La3Zr2O12,LLZO)因具有较高的锂离子电导率及与金属锂的良好兼容性,有望成为有机电解液的替代品。本文综述了该类型固体电解质的离子迁移机理,以及不同掺杂位点及掺杂剂类型对结构和电性能的影响,特别介绍了现阶段石榴石型固体电解质的致密化技术及机理,调研了LLZO界面改性方面的进展,对石榴石型固体电解质在锂离子电池中的应用进行展望。  相似文献   

2.
全固态锂离子电池具有高安全性、高能量密度、宽使用温度范围以及长使用寿命等优势, 在动力电池汽车和大规模储能电网领域具有广阔的应用前景。作为全固态电池的重要组成部分, 无机固体电解质尤其是石榴石型固态电解质在室温下锂离子电导率可达10 -3 S·cm -1, 且对金属锂相对稳定, 在全固态电池的应用中具有明显的优势。然而正极与石榴石型固体电解质间接触性能以及界面的稳定性差, 使得电池表现出高的界面阻抗、低的库伦效率和差的循环性能。本文以全固态锂离子电池正极与石榴石型固体电解质界面为研究对象, 分析了正极/固体电解质的界面特性以及界面研究中存在的问题, 综述了正极复合、界面处理工艺、界面层引入等界面调控和改性的方法, 阐述了优化正极与石榴石型固体电解质界面结构, 改善界面润湿性的解决思路, 提出了未来全固态锂离子电池发展中有待进一步改进的关键问题, 为探索全固态锂离子电池的实际应用提供了借鉴。  相似文献   

3.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

4.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

5.
用全氟醚作为增塑剂对PEO改性,并与双三氟甲烷磺酰亚胺锂复合,制备了全固态聚合物电解质。采用SEM、交流阻抗、稳态电流法及恒电流恒电压充放电等对固态聚合物电解质的性能进行了测试表征,结果表明:m(PFPE)∶m(PEO)=0.6的固态聚合物电解质膜的电导率30℃时为2.6×10-3 S·cm-1,同条件下电解质溶液电导为8.2×10-3 S·cm-1,二者处于同一个数量级;随PFPE的量增加,锂离子的迁移数增大;与液态电解质电池相比,固态聚合物电解质制成的电池具有更好的循环容量保持特性,固态聚合物电解质电池500次循环的容量保持率在88.1%,液态电解质电池循环容量保持率在64.5%左右;固态聚合电解质有很优异的耐高温安全性,在130℃和150℃下经1~2h热箱试验,用固态聚合物电解质制作的锂离子电池没出现明显体积变化,而相同条件下的液态电解质锂离子电池已发生爆裂或起火。  相似文献   

6.
硫化物固体电解质是发展高容量锂硫电池的理想候选者.然而,同时提高硫化物固体电解质的离子导电性、空气稳定性和电解质/电极界面的相容性仍然是一个巨大的挑战.因此,我们提出了一种双掺杂(Sb2O3和LiI)策略来制备多功能硫化物固体电解质. Sb2O3可以拓宽锂离子的传输路径和提高空气稳定性,而LiI可以抑制锂枝晶的生成和降低电解质/电极之间的电阻.因此,硫化物固体电解质在空气中和界面上的性能得到了增强,在30℃下的离子电导率为1.69×10-3S cm-1,且具有很好的空气稳定性,对金属锂也很稳定.在此基础上,组装的全固态锂硫电池以0.05 C循环100圈后,表现出较高的放电比容量(室温,833 mA h g-1; 60℃:949 mA h g-1).本文为制备实用的硫化物固体电解质和高性能全固态锂硫电池提供了合理的方案.  相似文献   

7.
与传统锂离子电池相比,全固态锂金属电池因其安全性好、能量密度高的特点备受关注.但是电极与固态电解质的固固接触带来较大的界面阻抗,而锂金属较为活泼易与固态电解质发生反应,造成了界面不稳定.界面问题已经成为制约全固态电池发展的关键因素之一.有机-无机复合固态电解质兼顾无机固态电解质和有机固态电解质的优势,具有较高离子电导率和一定的力学强度,展现出优异的实用化前景.本文综述了近年来复合固态电解质与金属锂负极界面改性的研究进展,总结了当前界面改性的主要研究思路:包括在界面构筑"软接触"、调节固态电解质的力学性能以及调控界面处锂离子的沉积动力学过程等.同时,也对今后界面改性的研究趋势进行了展望.  相似文献   

8.
锂空气电池[Li-O_2(air)]具有极高的能量密度,引起了越来越多的关注。全固态Li-O_2(air)电池使用不易燃的无机固体锂离子导体材料作为电池电解质,大大提高了电池的安全性能。研发具有高离子电导率、高稳定性的固体电解质对全固态Li-O_2(air)电池的发展起到极大的推动作用。此外,研发高性能正极催化剂、采取合理的技术手段提高电极/固体电解质界面性能也是全固态Li-O_2(air)电池面临的挑战。分别从正极、负极、固体电解质以及电极/电解质界面等方面对全固态Li-O_2(air)电池进行综述。  相似文献   

9.
综述了固态锂离子电池用的玻璃及玻璃陶瓷固体电解质材料研究现状, 包括氧化物、硫化物及氧硫化物玻璃固体电解质材料和氧化物、硫化物玻璃陶瓷固体电解质材料的电化学性能, 并讨论了材料的结构和形貌对其电化学性能的影响, 以及全固态电池的性能, 最后对全固态锂离子电池的应用进行了展望.  相似文献   

10.
全固态锂离子电池以其高能量密度和高安全性成为具有广泛应用前景的下一代储能技术。然而,全固态锂离子电池的容量过低和寿命过短限制了其在储能领域的应用。其中,正极材料(活性材料、电子导电剂、离子导电剂及固态电解质等)固-固界面稳定性不佳限制了全固态锂离子电池的容量利用率和循环寿命。综上,介绍和讨论了正极材料固-固界面稳定性及优化方法,包括化学稳定性、电化学稳定性、机械稳定性和热稳定性等,同时归纳了常用的全固态锂离子电池正极材料固-固界面优化方法,为全固态锂离子电池的开发和应用提供参考。  相似文献   

11.
The polymer electrolyte based solid-state lithium metal batteries are the promising candidate for the high-energy electrochemical energy storage with high safety and stability. Moreover, the intrinsic properties of polymer electrolytes and interface contact between electrolyte and electrodes have played critical roles for determining the comprehensive performances of solid-state lithium metal batteries. In this review, the development of polymer electrolytes with the design strategies by functional units adjustments are firstly discussed. Then the interfaces between polymer electrolyte and cathode/anode, including the interface issues, remedy strategies for stabilizing the interface contact and reducing resistances, and the in-situ polymerization method for enhancing the compatibilities and assembling the batteries with favorable performances, have been introduced. Lastly, the perspectives on developing polymer electrolytes by functional units adjustment, and improving interface contact and stability by effective strategies for solid-state lithium metal batteries have been provided.  相似文献   

12.
All‐solid‐state batteries (ASSBs) with ceramic‐based solid‐state electrolytes (SSEs) enable high safety that is inaccessible with conventional lithium‐ion batteries. Lithium metal, the ultimate anode with the highest specific capacity, also becomes available with nonflammable SSEs in ASSBs, which offers promising energy density. The rapid development of ASSBs, however, is significantly hampered by the large interfacial resistance as a matched lithium/ceramic interface that is not easy to pursue. Here, a lithium–graphite (Li–C) composite anode is fabricated, which shows a dramatic modification in wettability with garnet SSE. An intimate Li–C/garnet interface is obtained by casting Li–C composite onto garnet‐type SSE, delivering an interfacial resistance as low as 11 Ω cm2. As a comparison, pure Li/garnet interface gives a large resistance of 381 Ω cm2. Such improvement can be ascribed to the experiment‐measured increased viscosity of Li–C composite and simulation‐verified limited interfacial reaction. The Li–C/garnet/Li–C symmetric cell exhibits stable plating/striping performance with small voltage hysteresis and endures a critical current density up to 1.0 mA cm?2. The full cell paired with LiFePO4 shows stable cycle performance, comparable to the cell with liquid electrolyte. The present work demonstrates a promising strategy to develop ceramic‐compatible lithium metal‐based anodes and hence low‐impedance ASSBs.  相似文献   

13.
固态锂电池是新能源领域最有希望的下一代高能量密度电池体系之一。本文以聚合物固态电解质-锂负极界面的构型特征和形成机理为基础, 系统讨论界面接触性、界面化学和电化学反应、锂负极枝晶生长等问题对二者之间的界面稳定性与兼容性的影响。基于此, 本文重点阐述了掺杂改性、结构设计等手段在三种聚合物基体与锂负极之间的界面的应用。此外, 本文还综述了常见界面表征手段及其在聚合物固态电解质-锂负极界面的应用情况。最后, 基于设计和构筑稳定的聚合物固态电解质-锂负极界面的相关策略, 本文对掺杂、核层设计等界面优化手段的发展前景进行分析与展望。  相似文献   

14.
Substantial efforts are underway to develop all‐solid‐state Li batteries (SSLiBs) toward high safety, high power density, and high energy density. Garnet‐structured solid‐state electrolyte exhibits great promise for SSLiBs owing to its high Li‐ion conductivity, wide potential window, and sufficient thermal/chemical stability. A major challenge of garnet is that the contact between the garnet and the Li‐metal anodes is poor due to the rigidity of the garnet, which leads to limited active sites and large interfacial resistance. This study proposes a new methodology for reducing the garnet/Li‐metal interfacial resistance by depositing a thin germanium (Ge) (20 nm) layer on garnet. By applying this approach, the garnet/Li‐metal interfacial resistance decreases from ≈900 to ≈115 Ω cm2 due to an alloying reaction between the Li metal and the Ge. In agreement with experiments, first‐principles calculation confirms the good stability and improved wetting at the interface between the lithiated Ge layer and garnet. In this way, this unique Ge modification technique enables a stable cycling performance of a full cell of lithium metal, garnet electrolyte, and LiFePO4 cathode at room temperature.  相似文献   

15.
Metallic lithium (Li), considered as the ultimate anode, is expected to promise high‐energy rechargeable batteries. However, owing to the continuous Li consumption during the repeated Li plating/stripping cycling, excess amount of the Li metal anode is commonly utilized in lithium‐metal batteries (LMBs), leading to reduced energy density and increased cost. Here, an all‐solid‐state lithium‐metal battery (ASSLMB) based on a garnet‐oxide solid electrolyte with an ultralow negative/positive electrode capacity ratio (N/P ratio) is reported. Compared with the counterpart using a liquid electrolyte at the same low N/P ratios, ASSLMBs show longer cycling life, which is attributed to the higher Coulombic efficiency maintained during cycling. The effect of the species of the interface layer on the cycling performance of ASSLMBs with low N/P ratio is also studied. Importantly, it is demonstrated that the ASSLMB using a limited Li metal anode paired with a LiFePO4 cathode (5.9 N/P ratio) delivers a stable long‐term cycling performance at room temperature. Furthermore, it is revealed that enhanced specific energies for ASSLMBs with low N/P ratios can be further achieved by the use of a high‐voltage or high mass‐loading cathode. This study sheds light on the practical high‐energy all‐solid‐state batteries under the constrained condition of a limited Li metal anode.  相似文献   

16.
介绍一种新型的可用于锂离子电池的锂盐:LiODFB(lithium oxalyldifluoroborate).LiODFB独特的化学结构,使其结合了双乙二酸硼酸锂(LiBOB)及四氟硼酸锂(LiBF4)的优势.与LiBOB相比,LiODFB在碳酸酯中的溶解性和溶剂的黏度有了明显改善,从而使锂离子电池具有更好的低温性能和倍率放电性能.而与LiBF4相比,LiODFB能促进稳定固态电解液界面(solid electrolyte interface,SEI)的形成,改善了锂离子电池的高温性能.该种新型锂盐还具有以下优点:与金属锂的化学稳定性好,在高电位下能够很好地使铝箔得到钝化和提高锂离子电池安全性能及抗过充的能力.这些性能使得LiODFB成为一种极有可能替代LiPF6的新型锂盐.  相似文献   

17.
罗雨  何国强 《功能材料》2020,(1):1055-1062
综述了近几年科研工作者基于金属锂负极本身的改性的最新研究进展。金属锂的理论质量比容量达3860 mAh/g,密度为0.534 g/cm^3,标准还原电位为-3.045 V,这些优势使得金属锂成为下一代理想的锂二次电池(如锂硫、锂空气电池等)的负极材料。然而,锂离子的不均匀沉积导致的锂枝晶生长、体积膨胀及其随之带来的电池安全隐患和循环寿命的降低等缺陷严重困扰着金属锂电池的发展。本文从机械地增加锂负极的表面积、锂合金负极及混合锂负极、锂负极表面层以及二维三维基底四个方面对金属锂负极的改性进行分析。最后提出要实现金属锂电池的产业化,应从解决锂枝晶和体积膨胀两个方面,通过结合不同改性方法进行研究探索。  相似文献   

18.
Solid-state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+, GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid-state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability.  相似文献   

19.
The solid‐state Li battery is a promising energy‐storage system that is both safe and features a high energy density. A main obstacle to its application is the poor interface contact between the solid electrodes and the ceramic electrolyte. Surface treatment methods have been proposed to improve the interface of the ceramic electrolytes, but they are generally limited to low‐capacity or short‐term cycling. Herein, an electron/ion dual‐conductive solid framework is proposed by partially dealloying the Li–Mg alloy anode on a garnet‐type solid‐state electrolyte. The Li–Mg alloy framework serves as a solid electron/ion dual‐conductive Li host during cell cycling, in which the Li metal can cycle as a Li‐rich or Li‐deficient alloy anode, free from interface deterioration or volume collapse. Thus, the capacity, current density, and cycle life of the solid Li anode are improved. The cycle capability of this solid anode is demonstrated by cycling for 500 h at 1 mA cm?2, followed by another 500 h at 2 mA cm?2 without short‐circuiting, realizing a record high cumulative capacity of 750 mA h cm?2 for garnet‐type all‐solid‐state Li batteries. This alloy framework with electron/ion dual‐conductive pathways creates the possibility to realize high‐energy solid‐state Li batteries with extended lifespans.  相似文献   

20.
Inorganic solid fast Li+ conductors based batteries are expected to overcome the limitations over safety concerns of flammable organic polymer electrolytes based Li+ batteries. Hence, an all-solid-state Li+ battery using non-flammable solid electrolyte have attracted much attention as next-generation battery. Therefore, in the development of all-solid-state lithium rechargeable batteries, it is important to search for a solid electrolyte material that has high Li+ conductivity, low electronic conductivity, fast charge transfer at the electrode interface and wide electrochemical window stability against potential electrodes and lithium metal. Hence, significant research effort must be directed towards developing novel fast Li+ conductors as electrolytes in all-solid-state lithium batteries. Among the reported inorganic solid Li+ conductive oxides, garnet-like structural compounds received considerable attention in recent times for potential application as electrolytes in all-solid-state lithium batteries. The focus of this review is to provide comprehensive overview towards the importance of solid fast lithium ion conductors, advantages of lithium garnets over other ceramic lithium ion conductors and understanding different strategies on synthesis of lithium garnets. Attempts have also been made to understand relationship between the structure, Li+ conduction and Li+ dynamics of lithium garnets. The status of lithium garnets as solid electrolyte in electrochemical devices like all-solid state lithium battery, lithium-air battery and sensor are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号