首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat exchangers operating in process industries are fouled during operations and results in decrease in the thermal efficiency of a heat exchanger. Once the thermal efficiency decreases to a minimum acceptable level, cleaning of the equipment becomes necessary to restore the performance. This paper uses C-factor as a tool for investigation of the performance of a heat exchanger due to fouling which consequently gives information regarding the extent of fouling developed on the heat transfer surfaces. The fouling parameters are predicted by measurements of flow rate and pressure drop. In contrast to most conventional methods, the extent of fouling can be detected considering the flow rate and pressure drop when the heat exchanger operates in transient states. The C-Factor is first calculated through out cleaning period and then compared with the clean and the design value. The results show that the proposed tool is very effective in detecting the fouling developed and the corresponding degradation in heat transfer efficiency of a heat exchanger. Hence the results of this work can find applications in predicting the reduction in heat transfer efficiency due to fouling in heat exchangers that are in operation and assist the exchanger operators to plan cleaning schedules.  相似文献   

2.
It is well known that significant fouling by particulate matter can have a deleterious effect on the performance of enhanced surface heat exchangers, and the same is true for hybrid heat exchangers. Hybrid heat exchangers are heat exchangers that are typically run in dry mode to reject heat. When the ambient conditions require more heat rejection than can be provided by sensible heat transfer, a water pump is turned on and water flows over the fins, and the evaporation of water provides a further cooling effect. Fouling in dry-mode operation is physically similar to that of air-cooled heat exchangers, but in evaporative mode the flow of the water over the coil eliminates the impact of fouling. A hybrid dry cooler heat exchanger of 60 cm × 60 cm frontal area has been installed in a well-instrumented wind tunnel to measure the heat exchanger's performance. Hot water flows through the coil to provide the load, and air flows over the coil to provide cooling. During evaporative mode operation another stream of water flows over the outside face of the coil, adhering mainly to the louvered fins. The louvered fins are specially designed for optimized water flow during wetting mode. The fins are made of aluminum, the tubes are copper, and protection against corrosion is realized by a special E-coating. This coil has been tested clean and fouled with ASHRAE standard dust, for both dry and wet operation. Results are presented for the air-side pressure drop and overall heat transfer conductance of the coil under all conditions for which 50% increases in air-side pressure drop are found under heavy fouling. The influence of fouling on heat transfer is small. Also, using the wetting water to wash the fouling off the coil is investigated and is found to be of some limited utility.  相似文献   

3.
《Applied Thermal Engineering》2007,27(2-3):347-357
In oil refining, heat exchanger networks are employed to recover heat and therefore save energy of the plant. However, many heat exchangers in crude oil pre-heat trains are under high risk of fouling. Under fouling conditions, the thermal performance of heat exchangers is continuously reduced and its supervision becomes an important task. The large number of heat exchangers in pre-heat trains and the change of operation conditions and feedstock charges make the daily supervision a difficult task. This work applies an approach to follow the performance of heat exchangers [M.A.S. Jerónimo, L.F. Melo, A.S. Braga, P.J.B.F. Ferreira, C. Martins, Monitoring the thermal efficiency of fouled heat exchangers – A simplified method, Experimental Thermal and Fluid Science 14 (1997) 455–463] and extends it to monitor the whole train. The approach is based on the comparison of measured and predicted heat exchanger effectiveness. The measured value is computed from the four inlet and outlet temperatures of a heat exchanger unit. The predicted clean and dirty values of effectiveness are calculated from classical literature relations as a function of NTU and of heat capacity ratio (R). NTU and R are continuously adjusted according to mass flow rate changes. An index of fouling is defined for the whole network and the results show the performance degradation of the network with time. The work also suggests that Jerónimo’s index of fouling can be used to estimate the fouling thermal resistance of heat exchangers.  相似文献   

4.
This paper is concerned with how non-linear physical state space models can be applied to on-line detection of fouling in heat exchangers. The model parameters are estimated by using an extended Kalman filter and measurements of inlet and outlet temperatures and mass flow rates. In contrast to most conventional methods, fouling can be detected when the heat exchanger operates in transient states. Measurements from a clean counterflow heat exchanger are first used to optimize the Kalman filter. Then fouling is considered. The results show that the proposed method is very sensitive, hence well suited for fouling detection.  相似文献   

5.
《Applied Thermal Engineering》2007,27(16):2732-2744
A wide variety of industrial processes involve the transfer of heat energy between fluids in process equipment. As a result of this energy exchange unwanted deposits accumulate on the process surfaces causing a resistance to energy transfer. These deposits reduce the heat recovery and can restrict fluid flow in the exchanger by narrowing the flow area. Prevention and control of fouling is costly and time consuming. In many situations, fouling can be reduced but not necessarily eliminated. Fouling is a major unresolved problem in heat transfer.In general, the heat exchangers evaluated in this study were exposed to untreated lake water for typical conditions. After the prescribed time period the exchangers were taken off line and evaluated. Conclusions and observations regarding fouling of brazed heat exchangers, exposed to once-through lake water, are presented here. Transient observations and photographs of the exchanger surfaces are given. Results are presented that compare these heat exchangers to test plates, also exposed to lake water. The progressive change of surface appearance with increasing immersion times is presented.  相似文献   

6.
Fouling in shell-and-tube heat exchangers was modeled by combining Hasson's ionic diffusion model for scaling from CaCO3 solutions with a model for predicting the temperature distribution developed by Gaddis and Schlünder. Using the computed results, clean heat exchanger design rules were tested for fouling conditions. The effects of fouling on the efficiency of heat exchanger configurations were determined.  相似文献   

7.
In heat exchanger network synthesis, important features like pressure drop and fouling effects are usually neglected. In this work a new methodology is proposed to include these effects in grassroots as in retrofit designs. Heat exchangers are detailed designed during the heat exchanger network synthesis. Pinch analysis is used to obtain the heat exchangers network with the maximum energy recovery, and a new systematic procedure is proposed to the identification and loop breaking. Bell–Delaware method for the shell side is used to design the heat exchangers. An example of the literature was studied and the results show differences between heat exchangers, with and without the detailed design, relative to heat transfer area, fouling and pressure drop. The great contribution of this work is that individual and global heat transfer coefficients are always calculated, in despite of the current literature, where these value are assumed in the design step. Moreover, the methodology proposed to the heat exchangers design assures the minor heat exchanger according to TEMA standards, contributing to the minimisation of the heat exchanger network global annual cost. Finely, the new heat exchanger network considering pressure drops and fouling effects presents values more realistic then those one neglecting the equipment detailed design.  相似文献   

8.
Design of a novel, intensified heat exchanger for reduced fouling rates   总被引:1,自引:0,他引:1  
This paper describes an integrated approach into the design and evaluation of a novel tube bundle heat exchanger that achieves higher heat transfer levels at lower levels of pressure drop, while remaining less susceptible to gas-side fouling. The approach combines laboratory scale experiments with industrial observations and numerical simulations of full-scale heat exchangers to study the thermal, hydraulic and fouling characteristics of tube bundle heat exchangers. Three arrangements are compared and the advantages of the proposed novel arrangement are demonstrated. Enhanced heat transfer rates are combined with reduced pressure drop and gas-side fouling rates through careful design of the shape of the tube cross-section and reduced transverse spacing.  相似文献   

9.
Compact heat exchangers are very popular due to their effectiveness, small footprint and low cost. In order to protect heat exchangers in dirty applications, coatings can be applied to the heat transfer surfaces to extend effectiveness and minimize fouling. Coating selection is extremely important since the wrong coating can decrease unit effectiveness, cause more fouling, and/or erode the surface.An experimental investigation of coating effectiveness in compact plate heat exchangers is presented. New, cleaned and coated plate heat exchangers are considered in this study. Heat exchangers have been exposed to untreated lake water for various time periods. Transient effectiveness results compare the rate of fouling for coated and uncoated heat exchangers. Additional results compare deposit weight gain at the end of the test period and transient observations of heat transfer surface appearance. All heat exchanger combinations showed some deposit accumulation for the period considered.Results indicate that the thermal performance of the unit decreases with time, resulting in an undersized heat exchanger. For the conditions considered here, uncoated plates accumulate deposits up to 50% faster than coated plates and show a decrease in performance of up to 40%. Surface coating, exposure time, fluid velocity and concentration of particles can affect fouling.  相似文献   

10.
Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US National Heat Transfer Conference, 20–22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27–31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert–Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18–23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed.  相似文献   

11.
The effects of biofouling on air-side heat transfer and friction characteristics under wet conditions of three biofouled finned tube heat exchangers and one clean finned tube heat exchanger were investigated experimentally. Experimental results indicate that the biofouled fin efficiency of the evaporator decreases by 15.5% compared with the clean evaporator under the condition of the biofouled area ratio of 60% at the inlet air velocity of 2.0 m/s; The ranges of friction fouling factor and heat transfer fouling factor are 19.8%–43.1% and −15.6%−13.1%, respectively; a small quantity of biofouled particles can enhance heat transfer at low Reynolds number, and the enhancement effect decreases with the increase of Reynolds number.  相似文献   

12.
The scope of this research is to obtain a film coating on stainless-steel surfaces in order to reduce the interaction between the metal surface and the precipitates, so as to mitigate fouling in heat exchangers. Perfuoropolyethers were used to obtain nano-range fluorinated layers in order to make hydrophobic the stainless-steel surfaces. A pilot plant with two identical heat exchangers was built to investigate the ability of the hydrophobic coating of preventing fouling. The heat exchangers, installed in parallel, operated at the same temperature and pressure conditions, namely, laminar flow regime and inlet flow temperatures of 291–293 K for cold streams and 313–333 K for hot streams. We compared the heat transfer performance of the two heat exchangers. After a 5-month operation, the decrease in the heat transferred was 56% for the coated heat exchanger and 62% for the uncoated heat exchanger. Moreover, the increase of heat transfer resistance due to scale on the uncoated heat exchanger, with respect to the coated one, was three times higher.  相似文献   

13.
The effects of biofouling on air-side heat transfer and friction characteristics under wet conditions of three biofouled finned tube heat exchangers and one clean finned tube heat exchanger were investigated experimentally. Experimental results indicate that the biofouled fin efficiency of the evaporator decreases by 15.5% compared with the clean evaporator under the condition of the biofouled area ratio of 60% at the inlet air velocity of 2.0m/s; The ranges of friction fouling factor and heat transfer fouling factor are 19.8%―43.1% and ―15.6%―13.1%, respectively; a small quantity of biofouled particles can enhance heat transfer at low Reynolds number, and the enhancement effect decreases with the increase of Reynolds number.  相似文献   

14.
The existence of a `threshold' below which chemical reaction fouling of heat transfer surfaces by crude oil does not occur has been identified by Ebert and Panchal [Fouling Mitigation of Industrial Heat-Exchange Equipment, Begell House, 1997, 451–460] and clearly demonstrated by Knudsen et al. [Understanding Heat Exchanger Fouling and its Mitigation, Begell House, 1999, 265–272]. This phenomenon has important implications for the design and operation of heat exchangers in refinery pre-heat trains used for the processing of crudes. In this paper we show how a consideration of the fouling threshold condition can be incorporated into the design procedures for shell-and-tube heat exchangers. We then proceed to show how fouling can be mitigated through attention to heat exchanger design, particularly the choice of configuration. The cost of improperly designed units, based on the conventional use of `fouling factors', is demonstrated.  相似文献   

15.
An air-side data analysis method is developed for flat-tube heat exchangers under partially wet conditions. In order to simplify the combined sensible and latent heat transfer, it is assumed that condensate drainage paths develop such that, at steady state, water does not spread to noncondensing surfaces, which therefore remain dry. The air dew point is compared to local fin-tip and fin-base temperatures, and a partially wet flat-tube heat exchanger is partitioned into fully wet, partially wet, and dry-fin regions, which are subsequently analyzed as separate heat exchangers. Using an enthalpy-based effectiveness–NTU (number of transfer units) method, average fin efficiency is calculated for each region, and the locations of region boundaries are determined iteratively. The proposed data analysis method is demonstrated with experimental data for a flat-tube louver-fin heat exchanger under various latent loads. The general approach presented can be extended to other heat exchanger geometries.  相似文献   

16.
Multistage shell and tube evaporators are frequently used in phosphoric acid plants to increase the concentration of dilute phosphoric acid to 52–55 wt% P2O5. The concentrated phosphoric acid solution is supersaturated with respect to calcium sulfate. As a result, part of the calcium sulfate in the liquor deposits on the heat exchanger tube walls. Because the thermal conductivity of these scales is very low, thin deposits can create a significant resistance to heat transfer. Therefore, regular cleaning of heat exchangers is required, frequently at shorter than biweekly intervals. As the major costs in modern phosphoric acid plants are the cost of energy, a thorough understanding of the fouling kinetics and of the effects of various operational parameters on the behavior of calcium sulfate is required to improve operation and design of the shell and tube heat exchangers, which are extensively used. In this investigation, a large set of heat exchanger data was collected from shell and tube heat exchangers of the phosphoric acid plant of the Razi Petrochemical Complex in Iran, and the fouling deposits were analyzed with respect to appearance and composition. The overall heat transfer coefficients and fouling resistances were evaluated at different times, and a kinetic model for the crystallization fouling was developed. It is shown that the crystallization rate constant obeys an Arrhenius relationship with an activation energy of 57 kJ/mol. The average absolute error of 12.4% shows that the predictions of the suggested model are in good agreement with the original plant data.  相似文献   

17.
This paper presents the performance evaluation of heat exchangers of an existing naphtha hydrotreating (NHT) plant. Originally, the NHT plant consisted of six plain tube heat exchangers connected in series. During plant revamps operation, three plain tubes were replaced with the three twisted tube heat exchangers. In this study, the heat exchangers data were collected from the plant before and after installation of the three twisted tube heat exchangers. The data were then analyzed to see the effects of the twisted tube configuration on fouling of heat exchangers and heat transfer. The analysis of the data showed that the twisted tube heat exchangers caused reduction in fouling resistance of tubes and increased the heat transfer. Also, the replacement of the three shells and tube type heat exchangers by the twisted tubes resulted in an increase of feed flow rate by about 7.85%. An economic analysis showed that the simple payback period for the twisted tube heat exchangers is 2.12 years. It can be concluded that considerable benefits in terms of energy and cost savings can be realized through the application of this innovative twisted tube heat exchanger technology in existing or new chemical plants.  相似文献   

18.
Crude oil atmospheric distillation in petroleum refineries involves a heat exchanger network to heat the crude using hot side streams and pumparounds. This energy integration reduces the furnace load as well as the cold utility consumption, diminishing fuel costs and carbon emissions. During the operation, the effectiveness of the heat exchangers decreases due to fouling. This paper deals with preheat trains composed by multiple parallel branches, where it is investigated an alternative operating policy based on the optimization of stream splits, aiming to manipulate the flow rates according to the fouling status of the existent heat exchangers. The performance of the proposed approach is illustrated by three examples: two networks from the literature and one real network from a Brazilian refinery.  相似文献   

19.
《Applied Thermal Engineering》2000,20(15-16):1535-1544
Heat exchanger network retrofit using a pinch based approach is presented. In this approach, the criterion of minimum sensitivity of heat exchanger to fouling effects is accounted for. The present paper introduces this criterion without explaining its details that are described in the literature. A summary is given of HEN reconstruction in a crude distillation unit processing 4.2 million ton crude oil per year. While the total heat quantity of hot streams is 110 MW, the heat recovery in the existing HEN is 60 MW. Using Pinch Analysis, the target value of heat recovery at ΔTmin=10 K was determined at 91 MW. Measurements were carried out on the existing HEN with the aim to determine the influence of fouling effects on the heat transfer in the exchangers. Taking local constraints including fouling into account, HEN reconstruction was proposed. The heat savings in the reconstructed HEN was estimated at 75 MW.  相似文献   

20.
This paper mainly discusses the relevance of some cooling-water quality parameters and the cooling-water fouling mechanism. By using plate and shell-and-tube heat exchanger experimental systems that are built to simulate the practical operation of heat exchangers, we acquired groups of data of water quality parameters such as Fe3+ and Cl? in the cycle process. Then some interaction analyses were made to study the connection between water quality parameters and fouling deposition, and the results indicate that water quality parameters influence each other in a cycle process and the interconnections of water quality parameters have a direct and obvious impact on cooling-water fouling growth in the early operation stage. Later, fouling growth becomes stable for the reason that each parameter achieves a dynamic balance. Cooling-water fouling growth is a comprehensive result of water quality parameter dynamic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号