首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes the state of the art for thermal mathematical modeling of electronic packages during transient operation. The methods for calculating thermal contact conductance, view factors, and heat transfer coefficients are reviewed, and an algorithm for computer software is provided. Monte Carlo treatment of the data uncertainties is explained. The computer algorithm uniquely incorporates the subroutines for calculating the thermal contact conductance, absorption factor, and statistical representation of the thermal parameters for Monte Carlo analysis.  相似文献   

2.
The system identification method is one of the most important topics in engineering. An interesting application of this method is to investigate the heat transfer from the exhaust valve, especially the valve burning at high temperatures. This study consists of experimental and analytical work. During experimentation, two co-axial rods were used to transfer heat at their contact surfaces. Using the measured temperatures at different locations on the rods and the analytical method, the temperature distribution of the rods and the heat transfer coefficient of the contact surface were calculated. Using the above calculated temperatures at both sides of the contact surface and applying the system identification method, the temperature transfer function was estimated. Using the transfer function, a computational model was created. The results were compared to previous research work. An experimental apparatus, including an analog to digital board, was designed and set up for the experiment.  相似文献   

3.

The interfacial thermal contact conductance between an impinging molten droplet and a cold substrate plays an important role in the droplet spreading and solidification. In this paper, a simple correlation for the thermal contact conductance during a rapid contact solidification process was obtained. By introducing this correlation into the numerical model, a non-constant thermal contact conductance that varies with time and position was adopted for the first time to simulate the spreading and solidification of a molten droplet on a substrate. It was found that the droplet spreading and final bump shape are sensitive to the thermal contact conductance. Experiments were also performed to observe the final bump shape of the droplet. Qualitative agreement between the numerical and the experimental results justified the present method. Because the thermal contact conductance is not required to be prescribed, the present method is applicable to different operation conditions.  相似文献   

4.
The objective of this experimental study is to evaluate the heat transfer coefficient outside a tube with annular transverse fins, derived from strips of copper mechanically bound and coupled outside. Water is used as the heating medium, in turbulent conditions and flowing at different temperatures inside the tube. Petukhov's correlation has been selected to calculate the water heat transfer coefficient in the tube. The experimental data obtained are compared with a correlation from literature, and a similar trend is observed. A fitting of the data provides a correlation for the three tubes of different external diameter (30 mm, 22 mm, and 15.6 mm) that agrees very well with the experimental values. The thermal contact conductance is identified as the main reason for the difference between data and the original Briggs and Young correlation. An estimation of the contact conductance between fins and tubes provides values between 3500 and 11000 W/m2-K, slightly increasing with the air Reynolds number (based on the external diameter of the tube), whose range is 2000 to 8000. The thermal contact resistance is estimated and its importance is confirmed, contributing 30 to 50% to the total air-side thermal resistance in the tubes used in the experiments.  相似文献   

5.
Yan Song  Xin Zhuan  Xi Chen 《热应力杂志》2013,36(12):1390-1415
Thermal stress in the fabrication process of thermal barrier coating system (TBCs) has a significant effect on the quality of TBCs and the durability of gas turbine. In this work, a new analytical model was developed to calculate the thermal stress during the fabrication process of TBCs. Variations of the material properties with temperature of TBCs were well considered in the present model. Several spraying factors: such as pre-heating temperature, cold gas dynamic spraying (CGDS) method, thickness of top coating and thickness of substrate, which has significant effects on thermal stress generation, are also discussed in this work.  相似文献   

6.
The present work applies the regularized boundary integral equations that are newly developed to treat the thermoelastic field in thin anisotropic media. For the anisotropic thermal field, a direct domain mapping technique is applied with a unique interface condition that considers the heat conductance relation. By incorporating the heat conductance effect, the paper investigates how interfacial thermal stresses between generally anisotropic materials vary with the heat conductance coefficient. Accounting for the thermal conductance effect, the paper presents the complete algorithm for computing the thermal as well as the subsequent elastic fields on interfaces between dissimilarly adjoined anisotropic composites.  相似文献   

7.
采用扫描电子显微镜(SEM)、激光脉冲等方法研究了204NS和204NS-G粉末对等离子喷涂热障涂层组织结构及热导率的影响。结果表明:相比204NS-G粉末,204NS粉末制备的YSZ涂层具有较高的密度和较低的孔隙率。在1 000℃下,204NS粉末制备的YSZ涂层热导率为0.78 W/m·K,比204NS-G粉末制备的YSZ涂层热导率高约20%。  相似文献   

8.
针对一台立式燃油热水锅炉的结构特点,设计了在炉膛安装燃烧反应器对锅炉进行节能改造的方案,通过流体计算软件Fluent 对锅炉改造前后的燃烧换热状况进行了数值计算,并进行了锅炉改造前后热平衡对比试验,数值计算和试验结果基本一致.改造后提高了炉膛辐射换热量,增加了热烟气在炉内的停留时间,改变了原来锅炉炉膛受热不均的状况,换...  相似文献   

9.
基于人工智能的热模型可以有效地提升数据中心制冷能效比.受到机房实际采集数据的数量不足和覆盖范围不足的影响,使用实际采集数据集训练的热模型常常在准确度和泛化能力上存在不足.文章介绍了一种基于计算流体力学(Computational Fluid Dynamics,CFD)的人工合成数据增强技术,采用增强数据源对人工智能热模...  相似文献   

10.
燃气轮机应用的热障涂层   总被引:1,自引:0,他引:1  
简要叙述了燃气轮机热燃气通流部件上热障涂层镀数工艺的进展情况,最新开发的EB-PVD方法是TBC技术的重大突破,简介了EB-PVD方法及其设备。  相似文献   

11.
Shape optimization of a rectangular channel with the opposite walls roughened by staggered arrays of dimples has been performed not only to enhance turbulent heat transfer but also to reduce friction loss. The dimpled channel shape is defined by three geometric design variables, and the design points within design space are selected using Latin hypercube sampling. The shape of the channel is optimized with three-dimensional (3-D) Reynolds-averaged Navier–Stokes analysis and surrogate approximation methods. A weighted-sum method for multi-objective optimization is applied to integrate multiple objectives related to heat transfer and friction loss into a single objective. A weighted-average surrogate model is employed for this optimization. By the optimization, the objective function value is improved largely and heat transfer rate is increased much higher than pressure loss increase due to shape deformation. The optimum design results in lower channel height, wider dimple spacing, and deeper dimple. The flow mechanism shows the heat transfer rate is increased mainly in the rear portion of the dimple.  相似文献   

12.
13.
Ultrashort-pulsed lasers have been attracting worldwide interest in science and engineering communities. Studying the thermal deformation induced by ultrashort pulsed lasers is important for preventing thermal damage. In this article, we consider a three-dimensional (3-D) double-layered metal thin film, where the interface between layers is imperfectly thermal contact, and present a finite difference scheme and an iterative algorithm for studying thermal deformation in the metal thin film exposed to ultrashort pulsed lasers. The method is demonstrated by investigating the thermal deformation in a 3-D gold-chromium thin film.  相似文献   

14.
Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In these experimental methods, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Here, a generalized theory is presented that accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermal conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. On the other hand, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.  相似文献   

15.
《传热工程》2012,33(9):792-799
Spacecraft payloads that operate at cryogenic temperatures often use passive thermal control systems that incorporate a variety of thermal control coatings to reject heat to space. The thermal performance of these systems depends significantly on the emittance of their thermal control coatings. This paper presents total hemispherical emittance measurements carried out at the ISRO Satellite Centre (ISAC) for thermal control coatings: Aeroglaze Z307 absorptive conductive polyurethane black coating (from 8 0K to 150 K) and PUC conductive black polyurethane coating (from 70 K to 200 K). The experiments were conducted in vacuum using a steady-state calorimetric method. This paper highlights the importance of obtaining a steady state for accurately estimating the emittance at cryogenic temperatures and the criterion for achieving this. The results indicate that the emittance in the cryogenic temperature range increases with temperature for the coatings considered in this paper. Determination of the uncertainty in the experimental results is also presented. Further, the sensitivity of emittance estimates to chamber wall emittance is discussed.  相似文献   

16.
S. Ueda 《热应力杂志》2013,36(7):731-752
Effects of crack surface conductance on intensity factors for a functionally graded piezoelectric material under thermal load are investigated. The heat flux through the crack is assumed to be proportional to the local temperature difference. Moreover, two models for more realistic crack face electric boundary conditions are proposed. By using the Fourier transform, the thermal and electromechanical problems are reduced to a singular integral equation and a system of singular integral equations, respectively, which are solved numerically. Detailed results are presented to illustrate the influence of the thermal and electric conductance on the stress and electric displacement intensity factors.  相似文献   

17.
北仑电厂2号锅炉低负荷时省煤器出口烟温过低,不能保证机组的脱硝投运率,通过省煤器的分级改造,提高了SCR入口烟气温度,既满足了脱硝设备的烟温要求,又不影响锅炉热效率,为国内同类机组脱硝改造提供了借鉴.  相似文献   

18.
采用径向基函数神经网络的热工过程在线辨识方法   总被引:4,自引:0,他引:4  
刘志远 《动力工程》2005,25(6):844-848
基于M-RAN算法的RBF神经网络是一种动态神经网络,适合于过程的在线建模。对M-RAN算法的删除策略进行了改进,不仅删除那些连续对网络输出贡献较小的隐层单元,同时还将相似的隐层单元合并,使网络结构更加紧凑。将基于这种算法的RBF神经网络用于电厂非性线模型热工过程的在线辨识,仿真研究表明了这种建模方法的有效性,且所得模型精度高,计算量小,可直接应用于基于模型的控制算法。图4表1参18  相似文献   

19.
We propose a new inverse method which consists of building an “inverse model.” The model synthesis [1 G. Lefebvre , E. Palomo , and A. Ait-Yahia , Substructured Modelling of Linear Thermal Systems: The Model Synthesis , Numer. Heat Transfer B , vol. 39 , pp. 303324 , 2001 . [CSA] [Taylor & Francis Online], [Web of Science ®] [Google Scholar]], which allows us to gather several coupled elementary models in a single one, can be used to permute some outputs with some inputs of the direct model, solving a special coupling between the direct model and a particular one called “inversor.”

The model synthesis then provides an inverse model which can be used to perform usual simulations. We show the principles of the method, the practical “ticks,” and demonstrate with an example that it is an easy-to-use and efficient method.  相似文献   

20.
Light weight composite fins are considered to deal with thermal management problems for many microelectronic components. These composite fins are inherently anisotropic, therefore cannot be handled by a traditional one-dimensional approach; however, these materials can be designed to provide high thermal conductivity values in the desired direction to handle application-specific demands. In this article, we present analytical solutions for temperature distribution and heat transfer rate for orthotropic two-dimensional pin fins subject to convective-tip boundary condition and the contact resistance at the fin base. The generalized results are presented in terms of fin aspect ratio (fin length-to-radius ratio) and three dimensionless fin parameters that relate the internal conductive resistance to three convective resistances discussed in terms of dimensionless variables such as contact, tip, and axial Biot numbers, in addition to the axial-to-radial conductivity ratio. Several special cases including the insulated tip boundary condition are presented. It is demonstrated that the temperature distribution and heat transfer rate from the two-dimensional isotropic annular fin introduced earlier in the literature, can easily be recovered from the benchmark solutions presented in this article. Furthermore, dimensionless heat transfer rates are presented for the pin fins with contact resistance that can help to solve design and optimization problems of many natural-to-forced convection composite fins that are typically encountered in many microelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号