首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crude oil fouling rates are strongly affected by both local surface temperature and local surface shear stress. The use of in-tube inserts (such as hiTRAN) in heat exchangers has been shown to be effective in mitigating crude oil fouling while at the same time enhancing heat transfer. However, the introduction of inserts means that there will be axial and radial distributions of both local shear stress and local heat transfer coefficient between the repeating insert–wall contact points, which could mean that there will be local variations in fouling rate. While estimation of local shear stresses and film heat transfer coefficients is facile for bare round tubes, this is no longer the case for tubes fitted with inserts. Accordingly, this article describes a possible solution to the design challenge using computational fluid dynamics (CFD) simulation, the output of which is the temperature and velocity distributions in a three-dimensional geometry of the fluid flow in a tube fitted, for example, with a hiTRAN insert. A simple algorithm is then described for calculating the overall heat transfer coefficient based on the resulting temperature distribution along the wall of the tube. Simulated values of the overall heat transfer coefficient are then compared with those obtained by experiment, showing that there is good agreement, thereby indicating that predicted local values are accurate. Use of CFD in fouling applications now allows the prediction of local conditions when inserts are used and hence can be used to predict whether, and where, fouling might occur.  相似文献   

2.
ABSTRACT

The impacts of nucleate boiling and pressure on crude oil fouling are factors that have not been heavily investigated in previous research. Variables such as wall temperature and fluid velocity/shear are often a main focus, as they are key variables for predictive fouling models, which provide insight to fouling thresholds. Research detailed in this report shows that nucleate boiling and pressure greatly impact the measured fouling rate of a crude oil tested using the Heat Transfer Research, Inc., rotating fouling unit. When nucleate boiling is occurring, the use of fouling resistance plots to measure fouling rates is not a reliable method due to the impact boiling has on the heat transfer coefficient. Visual inspection of fouling deposits to validate fouling resistance data has also been found to be critical. Images of fouling deposits are included. Fouling under nonboiling conditions was shown to increase with increasing pressure.  相似文献   

3.
Fouling due to chemical reaction in preheat trains for the processing of crude oil plays a key role in the operation and maintenance costs and on greenhouse emissions to atmosphere in crude processing plants. A preheat train consists of a set of heat transfer units that provide the crude oil stream the required amount of thermal energy to reach its target temperature either by heat recovery or by direct firing. Fired heaters supply external high temperature heating through the burning of fuel which result in complex heat transfer processes due to the large temperature and pressure changes and vaporization that takes place inside the unit. In this work, a thermo-hydraulic analysis of the performance of fired heaters is carried out through the application of commercial software to solve the mathematical models using finite difference methods; the analysis is applied to the crude side of a vertical fired heater in order to evaluate the impact of process conditions such as throughput and crude inlet temperature (CIT) on the fouling that take place at the early stages of operation. Using a fouling rate model based on thermo-hydraulic parameters, fouling rates are predicted assuming steady state operation and clean conditions. Although variations in process conditions are known to influence fouling rates, little work has been done on the subject. In this work excess air and steam injection are studied as a means to mitigate fouling. Results show that throughput reduction brings about a marked increase in the fouling rates. A decrease in CIT affects only the convection zone and it is found that this effect is negligible. In terms of excess air, it is found that although it affects negatively the heater efficiency it can be used to balance heat transfer between the convection and radiation zone in a way that fouling rates are reduced; however this strategy should be considered right from the design stage. Finally it is observed that steam injection is an effective method to reduce fouling rates since it results in lower film temperatures and larger shear stress.  相似文献   

4.
For 20 years, Heat Transfer Research, Inc. (HTRI), has conducted dedicated, ongoing research into crude oil fouling behavior, specifically on developing test methods to measure fouling resistance over time and comparing fouling tendencies of different crude oils. More than 250 test runs with nineteen crude oils have been conducted. While current methods are sufficient for comparative fouling studies, general methods to predict fouling tendency remain elusive. Recent initiatives have focused our efforts on chemical characterization to screen crude oils and blends for fouling tendency, as well as on identifying thresholds for low fouling. Increasing the shear stress on the heat transfer surface as much as possible can mitigate heat exchanger fouling. Long-term success in controlling fouling depends upon a deeper understanding of the chemical characteristics of an individual crude oil and sound heat exchanger design practices. Current predictive fouling models are limited in their application, but improvements based on chemical characterization look promising.  相似文献   

5.
Fouling thresholds in bare tubes and tubes fitted with inserts   总被引:1,自引:0,他引:1  
Maya crude oil fouling reveals a straightforward dependency of initial fouling rate on surface temperature but a rather complex dependency on velocity in bare tubes, the initial fouling rate showing a maximum and then decreasing significantly towards zero as the velocity is increased. Surface shear stress clearly is an important parameter. CFD simulation of fluid flow in a tube fitted with a hiTRAN® insert reveals a complex distribution of surface shear stress. To compare the insert situation with the bare tube, an equivalent velocity concept is introduced on the basis that at a given average velocity the fluid flow results in the same average wall shear stress regardless of whether the tube is bare or is fitted with an insert. Using the equivalent velocity concept, the fouling data obtained using both a bare tube and a tube fitted with inserts can be correlated using a single model. Moreover, the fouling threshold conditions below which fouling is negligible, can be predicted for both situations.  相似文献   

6.
A batch stirred tank device has been developed for measuring fouling from oil samples. The unit consists of a baffled tank equipped with a centrally mounted long blade stirrer, and an electrically heated rod located at 40% of the radius of the tank. Heat transfer from the rod was first characterized. The velocity field was measured, from which the approach velocity to the probe was determined, which allowed the wall shear on the heating probe to be calculated from a literature equation. Fouling of a heavy oil fraction was studied in 1- to 2-day experiments with bulk oil temperatures typically at 320°C, initial probe surface temperatures to 536°C, and stirrer speeds of 100–900 rpm. Micrometer-sized iron oxide particles were added to the oil, such that fouling was due to a combination of particle deposition and coke formation. Deposition rates were measured thermally from the change in heat transfer coefficient when fouling was relatively heavy, and by thickness and mass accumulation when fouling was light. Effects of oil type, film temperature, stirrer rotation speed (or probe wall shear stress), and concentration of suspended particles on deposition rate and deposit composition are presented.  相似文献   

7.
Fouling characteristics are dictated largely by the properties of the thermal and hydrodynamic boundary layers. As a result, fouling mitigation strategies must take into account the conditions in this region. hiTRAN wire matrix tube inserts are a useful tool in altering the conditions near the tube wall, especially in the laminar and transition flow regions. This review article considers particle image velocimetry and laser doppler velocimetry measurements, which were employed in order to show the hydrodynamic differences between plain tubes and those containing inserts. Measurements indicate that the wall shear rate in tubes containing hiTRAN inserts operating in the laminar flow regime is similar to that for plain bore tubes operating in the turbulent flow regime. Moreover, the increased tube-side heat transfer coefficient that results from the reduction of the thermal boundary layer allows operation with smaller Effective Mean Temperature Differences (EMTDs). This enables the designer to reduce the tube wall temperature to a level below the fouling threshold temperature, e.g., to combat crude oil fouling. The results from the laser analyses into the hydrodynamic boundary layer are backed up by recent research data investigating the effect of hiTRAN inserts on sedimentation and particulate fouling. The thickness of the fouling layer was measured by applying a combination of photographic and laser measurement techniques. The results are compared to plain tube data and are reported as a function of both flow rate and hiTRAN insert packing density. The impact of altering the hydrodynamic and thermal conditions near to the wall is subsequently demonstrated for different fouling mechanisms. Studies of the impact of hiTRAN inserts on biological and chemical reaction fouling in crude oil processing are also reviewed. A better understanding of the threshold shear rates and wall temperatures for different fouling mechanisms is required for any study into the impact of fouling. Combining this knowledge with the principles outlined in this article clearly emphasizes the benefit of using hiTRAN wire matrix inserts as a powerful tool to mitigate fouling.  相似文献   

8.
9.
Fouling in crude oil preheat trains is a significant industrial problem which has restricted the application of process integration techniques such as "pinch technology" in this sector. A semiempirical fouling model for crude oil fouling developed by Panchal and co-workers allows the effects of fouling to be considered at the design stage for such networks. Application of this model at three levels--(1) design of new networks; (2) retrofitting of existing systems; and (3) identification of robust specifications for individual heat exchanger units--is discussed. The design issues are discussed using case studies illustrated by a graphical construction, the temperature field plot. Rigorous optimization of the final designs is not reported. The specification discussion describes how the crude fouling model can be incorporated into existing heat exchanger design software to identify exchanger configurations which are less likely to experience significant fouling over a range of operating conditions. This article concentrates on shell-and-tube designs, but the concepts will be applicable to other exchanger types once a suitable fouling model becomes available.  相似文献   

10.
ABSTRACT

Visbreakers and other thermal cracking units are thermal process units in crude oil refineries that upgrade heavy petroleum, usually residual oils produced from atmospheric or vacuum distillation of crude oil. The associated process streams of these units consist of heavy hydrocarbons with very high viscosities and impurities, resulting in fouling of the heat exchangers used to cool or heat these streams. This paper presents a practical fouling analysis for thermal cracking units in a refinery in Germany. Fouling management at this refinery was initiated as part of the refinery energy-saving program. Following similar analysis of the refinery's crude preheat trains, heat exchanger networks associated in the thermal cracking units were modeled by entering the plant monitoring data, network topology, and heat exchanger geometries into a commercial heat exchanger network simulator, SmartPM. Fouling behaviors of vacuum residue streams and thermal cracker residue streams were identified and quantified. Both chemical reaction fouling and particulate fouling mechanisms were identified to be responsible for the fouling in these streams. Dynamic fouling models were fitted and used to predict fouling of these heavy petroleum streams, which fouled on both the shell and tube sides of the shell-and-tube heat exchangers.  相似文献   

11.
Crude oil fouling in a laboratory fouling unit was investigated. The study focused on the preheat-train heat exchangers located just before the crude unit furnace and operating at temperatures in excess of 200C. A fouling rate model developed using laboratory data from crude blends was used to predict the threshold conditions where negligible fouling was expected under refinery conditions. The results from the model were compared to actual data from a fouling unit located at a refinery. The article discusses factors that may explain the performance of the model and the observed discrepancies between fouling data obtained in the laboratory and the field.  相似文献   

12.
Maya crude oil fouling reveals a seemingly straightforward dependency of initial fouling rate on surface temperature, but a maximum is found in the initial fouling rate–velocity relationship, which mirrors that found in a model chemical system of styrene polymerization. The linear dependency of the logarithm of the pre-exponential factor on apparent activation energy for the crude oil is also found in the styrene system. The apparent activation energy for the crude oil ranged from 26.4 kJ/mol at 1.0 m/s to 245 kJ/mol at 4.0 m/s. Such strong dependencies of apparent activation energy on velocity, even at high velocity, are consistent with Epstein's mass transfer reaction attachment model. Surface temperatures at which the fouling rate becomes velocity independent are 274°C and 77°C for Maya crude oil and styrene, respectively. For surface temperatures in excess of this isokinetic temperature, an increase in velocity would lead to an increase in the rate of fouling.  相似文献   

13.
Experimental fouling data have been analyzed on the basis of the change in overall heal transfer coefficient of the fouling test section. It is assumed that thermal hydraulic conditions in the test section remain reasonably constant for the duration of a fouling test. The model ofTaborek et al.|I| is used, and two parameters,/8,. and Rf?, that can be determined for each fouling test are derived by regression analysis. The parameter Rf? contains all the factors that influence fouling, while 1/ ?c, contains shear stress, deposit thickness, and bonding strength of the deposit. The parameter R?is the asymptotic fouling resistance and ? is the lime constant of the fouling resistance-time curve. These parameters were determined as a function of surface temperature. Limited data were available to indicate the effect of velocity on the parameters. The parameters 1/8, and R? may be used to predict the history of fouling in a heat exchanger. Until more.data are obtained and analyzed in this fashion, the values of 1/ ?c. and R? obtained in this paper should be applied at conditions for which the fouling data were obtained. A numerical example is presented.  相似文献   

14.
Abstract

Crude oil fouling of a shell-and-tube heat exchanger sized according to TEMA standard is compared to a No-Foul design under industrial operating conditions. For similar operating conditions, TEMA and No-Foul heat exchangers have the same behavior regarding fouling. Since the No-Foul one has less tubes by design for the same heat duty, shear stress is increased. Consequently, the No-Foul heat exchanger is less prone to fouling at the same throughput. Impact of tube bundle geometry is then investigated. Helically finned tubes are compared to plain tubes in the No-Foul heat exchanger. Under similar operating conditions, fouling rates measured are up to an order of magnitude lower than plain tubes (respectively 10?11 and 10?10 m2 K/J). However, pressure drop across the tube-side in both No-Foul plain and finned setup are increased in comparison to the TEMA heat-exchanger.  相似文献   

15.
Heat exchanger fouling model and preventive maintenance scheduling tool   总被引:1,自引:0,他引:1  
The crude preheat train (CPT) in a petroleum refinery consists of a set of large heat exchangers which recovers the waste heat from product streams to preheat the crude oil. In these exchangers the overall heat transfer coefficient reduces significantly during operation due to fouling. The rate of fouling is highly dependent on the properties of the crude blends being processed as well as the operating temperature and flow conditions. The objective of this paper is to develop a predictive model using statistical methods which can a priori predict the rate of the fouling and the decrease in heat transfer efficiency in a heat exchanger. A neural network based fouling model has been developed using historical plant operating data. Root mean square error (RMSE) of the predictions in tube- and shell-side outlet temperatures of 1.83% and 0.93%, respectively, with a correlation coefficient, R2, of 0.98 and correct directional change (CDC) values of more than 92% show that the model is adequately accurate. A case study illustrates the methodology by which the predictive model can be used to develop a preventive maintenance scheduling tool.  相似文献   

16.

A thermal fouling study was undertaken using three sour Canadian crude oils. Experiments were carried out in a re-circulation fouling loop equipped with an annular (HTRI) electrically heated probe. Fluids at pressures of about 1000–1340 kPa under a nitrogen atmosphere were re-circulated at a velocity of 0.75 m/s for periods of 48 hours, and the decline in heat transfer coefficient followed under conditions of constant heat flux. Bulk temperatures were varied over a range of 200–285?C, and initial surface temperatures ranged from 300–380?C. Heat fluxes were in a range of 265–485 kW/m2.

Surface temperature effects on fouling of the three oils were compared, and fouling activation energies were estimated. For the lightest oil, a more detailed study of velocity and bulk and surface temperature effects was carried out. The fouling rate decreased slightly with increasing velocity but increased with both surface and bulk temperatures; a rough correlation was developed using a modified film temperature weighted more heavily on the surface temperature. Deposits showed high concentrations of sulfur and minerals, indicating the importance of iron sulfide deposition.  相似文献   

17.
Deposition in flow lines and processing and heat transfer equipment arises from fouling species, which may either be present in the fluid or generated in the vicinity of the equipment surface. Recent research on deposition during heat transfer from petroleum feedstocks is reviewed. For low-sulfur light crude oils, deposition is largely due to particulates and gums. For medium-sulfur crude oils, the formation of iron sulfides plays a major role in deposition. In unstable heavy oil systems, suspended asphaltenes are the fouling species. Trace quantities of impurities such as dissolved oxygen or suspended corrosion products add markedly to deposit formation. The influences of flow velocity, bulk and surface temperatures, and particulate concentrations are demonstrated through experimental results and compared to expectations from simple models. Through an understanding of the key steps in the deposition processes, a rational mitigation strategy can be formulated.  相似文献   

18.
Fouling of oils on heat exchanger surfaces and pipelines is a common problem in a variety of industrial applications. This is because the oil deposits on the heat transfer surface causes an increase in pressure drop and a decrease in heat exchanger efficiency. In the current work, oil fouling in double pipe heat exchanger was investigated and mitigated using a surface‐active agent for the flow of a dispersion fluid containing different dispersed oil fractions in water. The effect of the dispersed oil fraction (5%vol and 10%vol) and temperature (35°C‐55°C) on the oil fouling rate was studied and discussed under turbulent flow conditions for both hot and cold fluids. Different amounts of alkylbenzene sulfonate as a surfactant were added to reduce the fouling rate under turbulent flow. It was found that the fouling thermal resistance (Rf) increases when the fluid temperature decreases. The higher the dispersed oil fraction, the higher the Rf for all temperatures due to higher oil deposition. Addition of 0.2%vol to 0.5%vol of alkylbenzene sulfonate caused an appreciable reduction in Rf depending on oil fraction and Reynolds number. The mitigation percent was higher for a lower Reynolds number, reaching up to 96%.  相似文献   

19.

Of all heat transfer research arenas, few have the investment return potential of crude oil fouling mitigation. However, crude oil fouling is a very complex phenomenon that occurs via the simultaneous activity of multiple mechanisms. Advances in this field of research are complicated further by the lack of standardized procedures, which would permit unequivocal comparisons of non-proprietary data. As a result, Heat Transfer Research, Inc. formed the Crude Oil Fouling Task Force (COFTF), which is composed of heat transfer experts from many of the world's leading energy companies. The principle endeavor of the COFTF is to ensure that crude oil fouling research is both standardized and industrially relevant. The COFTF recommendations are detailed in this paper.  相似文献   

20.
Conventional shell and tube heat exchangers sometimes have to use two severely fouling process streams, one in the tubes and one in the shell. This paper presents the design of a self-cleaning heat exchanger that applies the self-cleaning mechanism in the tubes of two parallel bundles handling the fouling process streams. For the transfer of heat between both bundles, a small circulating flow of conditioned water is used as an intermediate fluid, a fraction of which evaporates on the outside of the tubes of the high-temperature bundle and condenses on the outside of the tubes of the low-temperature bundle. This novel design, which consists of two parallel bundles in one shell, experiences very high film coefficients at the outside surface of both tube bundles and does not suffer from any fouling. Therefore, it is referred to as a “zero fouling” self-cleaning heat exchanger. In this paper, a conventional severely fouling crude oil preheater will be compared with a zero fouling self-cleaning heat exchanger for the same service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号