首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过第一性原理与热力学结合的方法,研究了Ga,In等掺杂的Co Sb3基方钴矿化合物中的复杂缺陷问题。详细计算了Ga,In在Co Sb3中填充,Co,Sb位置替换以及填充-替换同时共存等缺陷的形成能。研究结果表明,缺陷形成能与费米能级、化学势等相关。Ga,In等在方钴矿中不是单纯的填充,而是填充和Sb位置替换同时共存的复杂缺陷。Ga掺杂以填充-替换比例2∶1的缺陷为主,而In掺杂,根据不同的条件可形成填充,替换,以及不同比例的填充替换复合缺陷,其中尤其以4∶2和2∶1最多。根据巨正则系宗,研究了Ga,In掺杂系统的载流子浓度和各缺陷的浓度。发现Ga,In掺杂的方钴矿由于填充和替换电荷的自补偿效应,其载流子浓度较低,尤其是Ga填充,具有类似本征半导体的低载流子浓度,且得到实验证实。In掺杂系统由于填充替换的比例偏离2∶1,填充位置的In比Ga的稍高一些,因此具有比Ga掺杂更高的载流子浓度。  相似文献   

2.
近年来,含有本征电场的二维半导体材料因拥有抑制光生载流子复合的潜在能力而受到了光催化领域研究人员的广泛关注.在本文中,我们采用第一性原理计算方法,报道了一类具有本征极性的新型二维半导体材料一单层铟-VA族化合物(ML-InXs;X=P、As和Sb),并探究了它们作为光催化剂分解水的可能.我们系统地研究了ML-InXs的几何结构、电子结构和光学性质,发现它们具有优异的结构稳定性、合适的带隙和带边位置、出色的载流子迁移率和较广的光吸收范围,因此可以成为水分解反应的优秀光催化剂.更重要的是,在ML-InXs中由本征偶极矩产生的电场可抑制光生电子-空穴对复合,大大提高了光催化反应过程中的能量转换效率.此外,我们发现应变工程可以有效地调节ML-InXs的带隙和光吸收,并显著提高它们分解水时的太阳能转化效率.我们的研究进一步加深了人们对具有本征电场的二维光催化剂的理解,并可为未来设计出具有优异性能的水分解或其他重要化学反应的光催化剂提供理论指导.  相似文献   

3.
ZnO宽带隙半导体及其基本特性   总被引:2,自引:0,他引:2  
ZnO半导体是宽带隙半导体领域中继GaN和SiC之后的研究热点.同时,作为一种氧化物半导体,ZnO半导体在能带结构、晶格缺陷、抗辐照特性以及电学性质等方面具有特殊性,已有的研究中还存在一些不同的认识.本工作在阐述ZnO的晶体结构和基本性质基础之上,对其能带结构和缺陷特征、电子输运以及P型掺杂等主要的半导体特性研究现状进行了较为全面综述和分析.由于ZnO半导体具有高的激子束缚能、优良的电子输运性质、强抗辐照特性以及低成本和环境友好等显著特征,它是未来半导体光电子领域极具应用潜力的新一代宽带隙半导体材料,但是到目前为止,p型掺杂技术仍然是ZnO半导体器件面临的最大挑战.  相似文献   

4.
介电弛豫时间大于载流子寿命的半导体为弛豫半导体,反之为寿命半导体。因为介电弛豫时间正比于电阻率,所以弛豫半导体一般为高阻半导体,例如补偿半导体、非晶半导体或低温下的半导体。在弛豫半导体中,由于材料恢复电中性的过程慢于载流子浓度恢复质量作用定律的过程,所以必须考虑空间电荷,包括自由电荷和陷阱所带电荷,对载流子输运的影响。少子注入会导致弛豫半导体多子耗尽、寿命半导体多子增加;中性注入会导致弛豫半导体电子空穴分离、寿命半导体发生双极性输运。弛豫半导体的多子耗尽现象可用电流-电压测试和交流响应测试进行表征,发现其电流-电压特性由低电压下的扩展线性区和高电压下的超线性区构成,且受陷阱浓度影响。使用载流子动力学测试可直接观察到弛豫半导体中光注入电子和空穴的分离现象。弛豫半导体独特的电学性质在辐射探测器、抗辐照器件、光电导开关、温度传感器等领域有广阔的应用价值。  相似文献   

5.
采用氢气还原法制备氧缺陷型二氧化钛(TiO2-x),考察氧气氛中不同返烧温度对TiO2-x性能的影响.利用X射线光电子能谱、电子自旋共振谱、紫外?可见漫反射光谱和荧光光谱等技术对样品的表面化学状态、氧缺陷位的种类、光吸收性能和光生载流子的分离效率等性质进行了表征,并以气相的苯为模型污染物,研究催化剂样品在可见光(λ>400nm)照射下的光催化氧化能力.结果表明,与未返烧的催化剂相比,返烧后TiO2-x对苯的光催化氧化降解能力显著提高,反应4h、催化剂活性稳定后,经300℃返烧的TiO2-x样品对苯的转化率为36.9%,是未返烧样品的5.3倍.还原过程中生成的体相氧缺陷位(束缚单电子的氧空位)是催化剂具有可见光催化性能的主要原因,返烧热处理减少了催化剂表面氧缺陷位(Ti3+)的浓度并有效地抑制了光生载流子的复合.  相似文献   

6.
赵士超  季振国 《功能材料》2007,38(A02):543-545
氧化锌由于氧空位等本征缺陷的存在表现出n型半导体的性质,该性质使得氧化锌纳米颗粒可以用作导电材料。为了提高纳米氧化锌颗粒的电导率,通过简单、经济、新颖的液相反应法和喷雾热解技术对纳米氧化锌进行Al掺杂,并分析了掺杂工艺、电导测试方法对纳米氧化锌导电颗粒电阻率的影响。  相似文献   

7.
环氧树脂具有质量较轻、防腐性能和绝缘性能优良等一系列优势,因而被广泛应用于电气装备、高电压绝缘系统和航空航天等诸多领域。但环氧树脂的本征热导率较低,约为0.11~0.19 W/(m·K),如此低的热导率不利于系统及时有效地散热。氮化硼纳米片(BNNS)由于其优良的导热性能和绝缘性能,在高电压绝缘系统中具有广阔的应用前景。然而,BNNS制备流程复杂以及在液体中分散性差是目前限制其广泛应用的主要原因。采用一种简单而有效的蔗糖辅助机械化学剥离(SAMCE)方法来同时实现BNNS的剥离和改性,将蔗糖剥离改性得到的六方氮化硼(h-BN)加入环氧树脂中,添加改性h-BN的质量分数为15%时,复合材料的热导率可以达到0.51 W/(m·K),此时复合材料的热导率是纯环氧树脂材料的3.2倍,导热性能明显提升。为解释改性h-BN提升环氧树脂复合材料导热性能的机理,根据有效介质近似(EMA)理论模型反推计算得到改性前后h-BN/环氧树脂复合材料中填料颗粒与基质之间的界面热阻值,计算得到h-BN/环氧树脂复合材料的界面热阻为2.44×10-6m2·K/W,改性h-...  相似文献   

8.
半导体的广泛应用使得人们对其质量要求越来越高。半导体生产过程中塑封表面缺陷的检测得到更多生产厂家的重视。本文对SOT-23封装式半导体的表面塑封缺陷进行了研究,改进并优化半导体质量缺陷检测系统,通过边缘检测算法提取半导体管体的塑封边缘,确定被检管体的位姿,缩小检测范围,使用基于边缘点的模板匹配算法来判断字符的完整性,最后利用差影法准确地检测出塑封缺陷。经工厂试用后,结果显示此系统能有效地检测出表面质量缺陷。目前此系统已在工厂正式使用。  相似文献   

9.
李洁 《材料导报》2023,(12):43-51
多孔半导体材料具有大的比表面积、反应物与产物的择优选择性、光子与电子的传输微通道,极利于促进光催化反应进程,提升催化效率,在废水有机物的吸附与光催化方面有着重要应用。多孔半导体独特的结构在废水有机物处理过程中可发挥出光化学、动力学及电子学上的优势:大孔结构可作为光扩散与传输路径增加光子的吸收率;介孔孔道对物质具备特定的选择性,对复杂反应体系显得尤为重要;微孔能为电荷传导与迁移提供微观通路。结构缺陷以往被认为是光催化反应中的不利因素,会成为电子-空穴对的复合中心,缩短光生载流子的寿命,降低反应效率。近来研究者提出了新观点:结构缺陷能为光催化过程提供更多的反应场所和活性位点,表面缺陷的储氧作用可促进光催化氧化反应进程,晶格缺陷可作为光生电子迁移的微观通道。将缺陷位引入多孔构架设计成多孔缺陷结构,缺陷位的引入可显著增强多孔结构的光电及催化性能,在废水有机物光催化反应中突显出储氧作用、载流子分离与传输效应及优良的的催化性能。半导体多孔结构协同缺陷活性位极大地促进了光催化反应进程,提升了废水有机物光催化氧化分解效率,缺陷活性位与多孔结构相结合将是光催化剂设计的一个新方向。本文概述了多孔半导体材料...  相似文献   

10.
近年来,单层Ⅵ族过渡金属氧族化合物成为探索半导体中新奇物理性质的理想研究平台.这些单层直接带隙半导体材料因为多方面独特的性质,引起了人们的广泛关注.本文利用泵浦探测(pump-probe)技术对二硒化钼(MoSe_2)和二硫化钼(MoS_2)的二维合金材料的载流子动力学特性进行了研究.实验结果表明,载流子的弛豫过程会随着混合物MoS_xSe_(2-x)的配置比例发生显著变化.文中对这一结果进行了初步分析,讨论了掺杂对材料载流子散射的影响.因此,可以通过调节MoSe_2和MoS_2混合比例来调控载流子的弛豫时间.  相似文献   

11.
ZnO是一种宽禁带半导体材料(3.37eV),具有较高的激子结合能(60meV),室温下激子仍然存在。由于其结构特点及优异的光电性能,ZnO在微电子学、光电子学、集成光学和微电子机械系统等高技术领域有着广阔的应用前景,在国内外引起极大的关注。但本征的ZnO呈n型电导,p型ZnO的获得因较强的自补偿效应,存在较大困难,限制了其应用水平。针对ZnO目前的研究、就其本征缺陷、p型掺杂以及新型功能器件等方面做一简要评述。  相似文献   

12.
有机?无机杂化卤素钙钛矿晶体表面的缺陷浓度远高于其内部,严重影响了钙钛矿太阳能电池的光电转化效率和稳定性.通过开发多功能钝化剂可有效降低钙钛矿表面的缺陷密度,是进一步提高钙钛矿薄膜质量的一种有效途径.本研究中,我们首次应用了一种多功能的钝化材料:1?腈丙基?3?甲基咪唑氯盐,将其涂敷到钙钛矿表面可以同时钝化铅离子和碘离子缺陷,使载流子寿命延长两倍以上.最终,通过钝化甲脒铅碘钙钛矿表面,反式钙钛矿太阳能电池开路电压提高了40 mV,光电转化效率达到22.53%.同时,这种离子液体钝化处理使得太阳能电池的稳定性有所提升,封装器件在空气中60℃和AM1.5G标准光照条件下以最大功率点效率追踪500 h,效率仍保持在90%以上.  相似文献   

13.
受主掺杂 BaPbO3中的非化学计量比   总被引:1,自引:0,他引:1  
采用高温平衡电导法测定了高温平衡电导率随氧分压(10^-12~10^5 Pa)的变化曲线,由此确定了未掺杂和Al受主掺杂BaPbO3陶瓷多晶体中的主导缺陷及其电荷补偿缺陷.同时讨论了受主掺杂浓度对材料的高温平衡电导率、高氧分压和低氧分压下主导缺陷转变点的影响,确定了受主掺杂BaPbO3缺陷行为随掺杂量的变化机理.在高氧分压下,材料表现出本征缺陷行为,Pb离子空位占主导,电荷补偿缺陷为空穴;随着氧分压的下降,材料由本征缺陷控制区域进入非本征缺陷控制区域,受主杂质取代Pb离子空位占主导;在低氧分压区域,随着氧离子空位浓度的上升,氧离子空位取代空穴,成为受主杂质的电荷补偿缺陷.  相似文献   

14.
2012年9月23 ~ 28日,IUMRS-ICEM2012大会"新型热电材料的前沿专题"成功举办,众多专家汇聚一堂,共议热电材料发展. 美国California Institute of Technology的G Jeffrey SNYDER博士作了"Band Engineering for High Efficiency Thermoelectrics"的邀请报告.他认为复杂结构热电材料仍旧是未来提高热电优值的重要研究方向.半导体材料中,高的态密度有效质量会导致高的Seebeck系数,但是高的载流子有效质量会降低迁移率,从而降低热电优值.而只有高的谷缺陷会增加有效质量的态密度有效质量,利用高度二次缺陷目前已获得1.4的热电优值,即ZT=1.4.  相似文献   

15.
陶瓷化学传感器的敏感机制与晶界的化学缺陷结构在周围微环境下的变异密切相关.晶粒表面和晶界是空位源,研究陶瓷材料在环境气氛中晶界化学缺陷的变化,对于探索陶瓷材料的敏感机制和开拓新应用具有重要意义.本文就BaTiO3基PTCR陶瓷中本征缺陷的生成和分布,缺陷在高温冻结、吸附和脱附过程中的变化,缺陷的重分布及其对晶界势垒的贡献进行深入的讨论.  相似文献   

16.
ZnO薄膜p型掺杂的研究进展   总被引:14,自引:0,他引:14  
ZnO是一种新型的II-VI族半导体材料,具有许多优异的性能.但由于ZnO存在诸多的本征施主缺陷(如空位氧Vo和间隙锌Zni),对受主产生高度自补偿作用,天然为n型半导体,难以实现p型转变.ZnO薄膜p型掺杂的实现是ZnO基光电器件的关键技术,也一直是ZnO研究中的主要课题,目前已取得重大进展,文章对此进行了详细阐述.  相似文献   

17.
报道了一种OFET,它采用ITO作为源漏电极,聚酰亚胺为绝缘层,CuPc为半导体层.实验结果表明,该器件具有明显的场效应性质,性能较好,载流子迁移率和开关比分别达2.3×10-3 cm2/V.s、800,表明ITO是一种合适的、有前途的p型OFET源漏极材料.为此,本文对由电极材料和半导体材料间形成的接触电阻对OFET性能影响进行了分析.  相似文献   

18.
为了能够准确判别固体火箭发动机内部缺陷的性质和可能对发动机造成的危害,需要从三维空间的角度来观察分析.在传统的缺陷分析中,主要是通过观察CT的二维切片序列图像以及对二维图像的主观分析去发现缺陷体.为了对缺陷体进行更为准确、立体地分析,提出对固体火箭发动机工业CT三维体数据进行处理.首先,通过结合形态学和Otsu阈值分割方法对缺陷进行分割和提取;然后,重构出缺陷体三维体数据;最后,对体数据进行三维可视化显示.实验结果表明,该方法能有效、准确地分割和提取固体火箭发动机三维CT图像缺陷,具有较强的鲁棒性.  相似文献   

19.
为了更好地了解P型4H-SiC的电学特性,评价其晶体质量,利用激光和微波技术作为非接触、非破坏性测量半导体特性的一种工具,详细描述了该测试方法和实验装置,讨论了高温退火前后晶片中少数载流子寿命的变化,并用LabVIEW对测试数据进行了拟合。结果表明:高温退火能提高载流子寿命,并且实验数据与拟合结果较符合。说明了微波光电导衰减法(μ-PCD)是一种测试少子寿命的快速、有效方法,对研究半导体材料性能具有重要意义;同时,研究高温退火条件下少子寿命的变化,对提高其材料的电性能也具有重要意义。  相似文献   

20.
分别研究了0.18μm NMOSFETS的传统漏雪崩热载流子(DAHC)和衬底偏压增强电子注入(SEEI)的退化机制.结果表明,在这两个偏置条件下,界面缺陷的产生均是导致热载流子诱导器件性能退化的主导因素.界面缺陷诱导的反型层电子迁移率下降是导致先进深亚微米NMOSFETS电学特性退化的根本原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号