首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Super-high heat flux removal using sintered metal porous media   总被引:1,自引:1,他引:0  
Introduction Recently there have been a demand for the technique to efficiently and steadily cool down extremely high heat flux of over 10 MW/m2, to fulfill not only the needs for plasma facing components in nuclear fusion reactors, but also the needs associated with sophisticated computers or downsizing of such devices as high-density laser equipment and power devices. However, existing cooling techniques in such high heat loading environment are basically based on high speed and highly subc…  相似文献   

2.
With the latent heat, the phase change material (PCM) is widely used in battery thermal management (BTM) to control the temperature. In this paper, the porous medium is employed to enhance the heat transfer of PCM. The lattice Boltzmann model for PCM/porous medium in pore scale is considered, where the mesh system with porous medium (fixed point) is generated by quartet structure generation set (QSGS) method. The effects of the Rayleigh number and porosity on the heat transfer process in BTM are investigated. The results show that decreasing the porosity will accelerate the melting rate. When the porosities are 0.9, 0.8, 0.7, and 0.6, the total melting times are decreased by 23.7%, 43.3%, 58.0%, and 75.4%, compared with pure PCM. The heat is transferred through the high‐conductivity framework. The natural convection in the porous medium is weak, and the conduction is the dominated heat transfer. As a result, the area of solid–liquid interface will be increased, and the heat‐transferred rate is accelerated. However, when the Rayleigh number is raised to 105, applying the porous medium with porosity of 0.9 will increase the total melting time, resulted from the stronger natural convection of PCM. The present study is helpful for design of PCM/porous medium‐based BTM.  相似文献   

3.
新型多孔铜微通道散热技术采用多孔铜微通道结构,增加热沉与冷却工质的接触面积,提高热沉的散热性能。利用单室金属-气体共晶定向凝固工艺,通过控制冷却速度、过热度、气压等工艺参数,从而制备优质的多孔铜材料。根据多孔铜微通道热沉散热原理,搭建散热性能测试平台,研究冷却工质流量、多孔铜材料的孔径和孔隙率、入口截面斜率角对多孔铜微通道热沉散热性能的影响规律。结果表明:增加冷却工质流量有利于提高多孔铜微通道热沉的散热性能;在恒定体积流量下,减小孔径有利于提高多孔铜微通道热沉的散热性能;当多孔铜孔隙率为30.8%时,多孔铜微通道热沉散热性能最佳;入口截面斜率角对多孔铜微通道热沉散热性能的影响较小。  相似文献   

4.
The porosity of fibrous materials is an important factor to their insulating performance. This paper considers the optimal porosity distribution of non-uniform fibrous porous medias for thermal insulation. Heat flow through the fibrous porous media is described by a coupled conduction–radiation heat transfer model which is numerically solved by using Finite Volume Method, and the optimal porosity distribution corresponding to the minimum total heat transfer is derived by applying a BFGS quasi-Newton optimization procedure. Variable analysis shows that the optimal porosity distribution is typically piecewise in conductive heat transfer dominated porous medium. For practical reasons, the change of porosity distribution across the thickness of the fibrous porous media may need to be continuous. To derive such a continuous optimal porosity distribution, a small penalty item should be introduced into the objective function. The study shows that, a continuous optimal porosity distribution generally has relatively high porosity at both boundaries and relatively low porosity in the centre region. The optimal distribution depends on many factors such as fibre radius, fibre emissivity, temperature difference, and overall mean porosity.  相似文献   

5.
实验研究了梯度孔密度通孔金属泡沫的池沸腾传热性能。工质为去离子水,梯度孔密度金属泡沫材质为铜和镍, 孔隙率为0.98,泡沫厚度为4-14 mm。实验结果表明:相比于单层泡沫,梯度孔密度金属泡沫显著的增强了沸腾传热能力,但增强程度受孔密度变化梯度、泡沫厚度和材料的影响;梯度孔密度泡沫的池沸腾传热性能随着表面活性剂SDS浓度的增大而减小,而且SDS降低了梯度孔密度金属泡沫的临界热流密度; 添加Al2O3纳米颗粒严重的削弱了梯度孔密度铜泡沫的池沸腾传热能力。  相似文献   

6.
This work presents a study on laminar free convection within a square cavity filled with a fluid saturated porous medium. Macroscopic flow equations are obtained by volume-averaging local instantaneous continuity and momentum equations. The so-called “two-energy equation model” is used, in which distinct macroscopic equations are applied to the working fluid and the solid material. Transport equations are discretized using the control-volume method and the system of algebraic equations is relaxed via the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm. The effect of Ram on Nuw correctly predicted the enhancement of passive heat transfer across the cavity for increasing Ram. Increasing ks/kf enhances the conduction transport through the solid material and, consequently, dampens the overall Nusselt number, defined here as the ratio between conduction and convection mechanisms over conduction transport only. Further, results indicate that by increasing the void space within the porous material the overall Nusselt number is reduced rather than increased. Individual contributions to the average Nusselt number indicate that, although convection is enhanced with increasing porosity, the reduction of conduction heat transfer through the solid material is the controlling mechanics for Nuw as porosity increases. The results herein might contribute to design and optimization of passive heat transfer systems.  相似文献   

7.
Abstract

Understanding the effects of microstructural parameters on the heat transfer through an aerogel-based vacuum insulation panel (VIP) is important for the design and development of thermal insulation materials. The present work first prepared the aerogel-based VIP and characterize its microstructure through scanning electron microscopy and nitrogen gas adsorption analysis. A theoretical model for the thermal conductivity of the aerogel-based VIP was then presented and validated with experimental results. Based on the model, the effects of microstructural parameters, i.e. particle diameter and pore diameter, on the thermal conductivity of the aerogel-based VIP were explored. The results indicated an extremely low thermal conductivity with approximately 1.7?×?10?3 W·m?1·K?1 can be achieved as the particle diameter and pore diameter are 1 and 10–15?nm, respectively. Furthermore, the microstructure effect under various service time of the aerogel-based VIP was considered for practical heat transfer engineering. It was found that the increase rate of the thermal conductivity decreases with a decreased particle diameter or an increased pore diameter. The microstructure effect modeling of the aerogel-based VIP could be of great advantage to heat transfer engineering applications aiming to reducing heat loss and saving energy.  相似文献   

8.
To improve the hydrogen production performance of microreactors, the selective laser melting method was proposed to fabricate the porous metals as catalyst supports with different pore structures, porosities, and materials. The influence of the porous structures on the molecule distribution after passing through the porous metals was analyzed by molecular dynamics simulation. The developed porous metals were then used as catalyst supports in a methanol steam reforming microreactor for hydrogen production. Our results show that the porosity of the porous metal had significantly influence on the catalyst infiltration and the reaction process of hydrogen production. A lower degree of catalyst infiltration of the porous metal was obtained with lower porosity. A copper layer-coated stainless-steel porous metal with a staggered structure and gradient porosity of 80%–60% exhibited much larger methanol conversion and H2 flow rate due to its better heat and mass transfer characteristic. Methanol conversion and H2 flow rates could reach 97% and 0.62 mol/h, respectively. Finally, it was found that the experimental results were in good agreement with the simulation results.  相似文献   

9.
Improvement of the thermal conductivity of a phase change materials (PCM) is one effective technique to reduce phase change time in latent heat storage technology. Thermal conductivity is improved by saturating porous metals with phase change materials. The influence of effective thermal conductivity on melting time is studied by analyzing melting characteristics of a heat storage circular capsule in which porous metal saturated with PCM is inserted. Numerical and approximate analyses were made under conditions where there are uniform or non-uniform heat transfer coefficients around the cylindrical surface. Four PCMs (H2O, octadecane, Li2CO3, NaCl) and three metals (copper, aluminum and carbon steel) were selected as specific materials. Porosities of the metals were restricted to be larger than 0.9 in order to keep high capacity of latent heat storage. Results show that considerable reduction in melting time was obtained, especially for low conductivity PCMs and for high heat transfer coefficient. Melting time obtained by approximate analysis agrees well with numerical analysis. A trial estimation of optimum porosity is made balancing the desirable conditions of high latent heat capacity and reduction of melting time. Optimum porosity decreases with increase in heat transfer coefficient.  相似文献   

10.
It is known that thermal diffusivity, a, of several types of porous ceramic and refractory materials decreases with decreasing gas pressure. However, a of several ceramics (e.g., magnesite refractories with porosity about 25%) measured in vacuum by the monotonous heating exceeds the comparable data registered at atmospheric pressure. A similar effect was found for thermal diffusivity of several insulating materials. However, for some porous ceramics this phenomenon is absent or less prominent.It had been known that several heterogeneous physico-chemical processes take place on pore surfaces of ceramic materials. These processes include heterogeneous chemical reactions accompanied by emission of gaseous products. It had been conjectured that these processes affect thermophysical properties of ceramic materials, especially during fast heating or cooling.In this paper we substantiate this conjecture. Namely, we develop a quantitative model for the apparent thermal diffusivity, as measured by the nonstationary monotonous heating method. It takes into account the emission and adsorption of the gas on the opposite pore sides along the temperature gradient, the diffusive gas motion inside the pores and its removal from the pores due to the material gas permeability. The effect of these processes is shown to produce an additional heat flux inside the pore or crack and, hence, to increase the measured thermal diffusivity.In the presence of the passive gas, the rates of gas emission and its transport within the pore are significantly reduced, which leads to diminution of the effect of gas emission-adsorption on the heat transfer across the pore. Consequently, we show that this leads to a situation (observed in experiment) where thermal diffusivity of a material measured at high temperature in vacuum may exceed the comparable property at atmospheric pressure.When the reaction terminates due to the full conversion of the available solid reactant, the additional heat flow due to the gas emission and adsorption terminates, and the measured thermal diffusivity decreases. The rates of gas removal and of chemical conversion depend on the amount of reactant available within the specimen and on the heating rate. We show that as a result of this, the measured thermophysical properties depend on the material thermal history and heating parameters, and, hence, cannot be regarded as true material properties.  相似文献   

11.
La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) is the most widely used cathode material for intermediate temperature solid oxide fuel cells. In the present communication, porous LSCF cathodes are fabricated by tape casting, a low-cost and reproducible fabrication process. The effects of four different pore formers, namely, graphite, carbon black, rice starch, and corn starch, on the microstructure and electrochemical performance of the LSCF cathode are investigated. Examination of the microstructures reveals that the shape of the pores, the pore size, and the pore distribution in the final ceramic are related to the type of pore formers. Impedance analysis and cell testing show that the best performance is obtained from the cathode using graphite as the pore former. The microstructure indicates that graphite results in a porous LSCF cathode with a large surface area and high porosity, which can offer a considerably long triple phase boundary for catalytic reactions as well as channels for gas phase transport.  相似文献   

12.
The flow and heat transfer characteristics of porous heat-storage wall in greenhouse are studied by using the one-dimensional steady energy two-equation model for saturated porous medium. The results show that the heat exchange between the air and the solid matrix of the porous heat-storage wall depends upon the inlet air velocity, the porosity and the permeability of porous medium, and the thermal conductivity of the solid matrix. Because the incidence of solar radiation on the porous heat-storage wall is not uniform, the new composite porous solar wall with different porosity is proposed to reduce the disadvantageous effect. __________ Translated from Journal of Engineering Thermophysics, 2008, 29(2): 284–286 [译自: 工程热物理学报]  相似文献   

13.
This investigation numerically explores the fluid flow and heat transfer characteristics of the metallic foam heat sink under the laminar slot jet confined by a parallel wall. The Prandtl number is 0.7, and the range of Reynolds numbers is 100–500. The parameters of interest in this work are the porosity (?), pore density (PPI), effective solid conductivity (k s *), jet nozzle width (W), ratio of the porous sink length to the jet nozzle width (L/W), ratio of the jet-to-sink distance to the jet nozzle width (C/W), and ratio of the porous sink height to the jet nozzle width (H/W). The simulation data reveal that the Nusselt number of the system with a metallic porous heat sink was much better than that of the system without a porous sink, for a given volumetric flow rate and value of (C+H)/W. The porous properties (such as ? and k s *) and the system configurations (such as L/W and H/W) strongly influenced the cooling performance. The effect of the PPI, W, and C/W values on the heat transfer characteristics of the system was negligible. The effect of the fluid flow on the thermal results was examined. Finally, the correlations of the stagnation Nusselt number and the average Nusselt number were also determined using the numerical data for a system with the size of a common multi-chips module.  相似文献   

14.
This paper presents an analytical and numerical study on the heat transfer characteristics of forced convection across a microchannel heat sink. Two analytical approaches are used: the porous medium model and the fin approach. In the porous medium approach, the modified Darcy equation for the fluid and the two-equation model for heat transfer between the solid and fluid phases are employed. Firstly, the effects of channel aspect ratio (αs) and effective thermal conductivity ratio (k?) on the overall Nusselt number of the heat sink are studied in detail. The predictions from the two approaches both show that the overall Nusselt number (Nu) increases as αs is increased and decreases with increasing k?. However, the results also reveal that there exists significant difference between the two approaches for both the temperature distributions and overall Nusselt numbers, and the discrepancy becomes larger as either αs or k? is increased. It is suggested that this discrepancy can be attributed to the indispensable assumption of uniform fluid temperature in the direction normal to the coolant flow invoked in the fin approach. The effect of porosity (ε) on the thermal performance of the microchannel is subsequently examined. It is found that whereas the porous medium model predicts the existence of an optimal porosity for the microchannel heat sink, the fin approach predicts that the heat transfer capability of the heat sink increases monotonically with the porosity. The effect of turbulent heat transfer within the microchannel is next studied, and it is found that turbulent heat transfer results in a decreased optimal porosity in comparison with that for the laminar flow. A new concept of microchannel cooling in combination with microheat pipes is proposed, and the enhancement in heat transfer due to the heat pipes is estimated. Finally, two-dimensional numerical calculations are conducted for both constant heat flux and constant wall temperature conditions to check the accuracy of analytical solutions and to examine the effect of different boundary conditions on the overall heat transfer.  相似文献   

15.
The present experimental and numerical work investigates the effect of metallic porous materials, inserted in a pipe, on the rate of heat transfer. The pipe is subjected to a constant and uniform heat flux. The effects of porosity, porous material diameter and thermal conductivity as well as Reynolds number on the heat transfer rate and pressure drop are investigated. The results are compared with the clear flow case where no porous material was used. The results obtained lead to the conclusion that higher heat transfer rates can be achieved using porous inserts at the expense of a reasonable pressure drop. Also, it is shown that for an accurate simulation of heat transfer when a porous insert is employed its effective thermal conductivity should be carefully evaluated.  相似文献   

16.
A porous metal was suggested to be used for the anode of a DCFC. Thermo-fluidic characteristics of fuel-electrolyte mixture in the porous metal should be known in order for proper design of the anode. Previous researchers investigated pressure drop and heat transfer performance of fluids flowing through metal foams that have different pore densities and porosities. Various characteristic length scales were used for the Reynolds number and friction factor of metal foams in the previous works. In the present study, we propose a realistic definition of the characteristic length scale that is applicable to pressure drop evaluation in metal foams regardless of pore density and porosity. A series of experiments was conducted to obtain friction factor of metal foam. An equivalent diameter based on permeability and porosity appeared to best fit the experimental data produced using various metal foams. The relationship between the friction factor and Reynolds number through metal foams can be classified into three regimes. In Re < 20, ln f is inversely proportion to ln 16/Re. In Re > 2000, the value of friction factor approaches 0.17. The relationship between friction factor and Reynolds number of foam materials appeared to be similar trend to that of Moody chart.  相似文献   

17.
The flow and heat transfer characteristics of porous heat-storage wall in greenhouse are studied by using the one-dimensional steady energy two-equation model for saturated porous medium. The results show that the heat exchange between the air and the solid matrix of the porous heat-storage wall depends upon the inlet air velocity, the porosity and the permeability of porous medium, and the thermal conductivity of the solid matrix. Because the incidence of solar radiation on the porous heat-storage wall is not uniform, the new composite porous solar wall with different porosity is proposed to reduce the disadvantageous effect.  相似文献   

18.
In this paper, the feasibility of using metal foams to enhance the heat transfer capability of phase change materials (PCMs) in low- and high-temperature thermal energy storage systems was assessed. Heat transfer in solid/liquid phase change of porous materials (metal foams and expanded graphite) at low and high temperatures was investigated. Organic commercial paraffin wax and inorganic calcium chloride hydrate were employed as the low-temperature materials, whereas sodium nitrate was used as the high-temperature material in the experiment. Heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied. Composites of paraffin and expanded graphite with a graphite mass ratio of 3%, 6%, and 9% were developed. The heat transfer performances of these composites were tested and compared with metal foams. The results indicate that metal foams have better heat transfer performance due to their continuous inter-connected structures than expanded graphite. However, porous materials can suppress the effects of natural convection in liquid zone, particularly for PCMs with low viscosities, thereby leading to different heat transfer performances at different regimes (solid, solid/liquid, and liquid regions). This implies that porous materials do not always enhance heat transfer in every regime.  相似文献   

19.
Composite cavities formed by a clear space, a layer of porous material, and a solid plate can be engineered for controlling the overall heat transfer across the enclosure. Using different layer dimensions, as well as distinct porous and solid materials, the value of the cavity Nusselt number can be modified with regard to traditional Nu??Ran behavior, which is encountered either in completely empty cavities or in cavities fully fitted with porous materials. Motivated by such novel application, this work presents a study about turbulent natural convection in a composite concentric annulus. The annulus is assumed to be two-dimensional and positioned horizontally, being isothermally heated at the inner cylinder and cooled from the outer surface. Laminar flow is considered in addition to the turbulent regime, which is handled via the standard kε model. The wall treatment applied is the High Reynolds approach. The Two-Energy Equation Model (2EEM) is utilized in the porous section. The transport equations are discretized using the control-volume method. The system of algebraic equations is relaxed via the Semi Implicit Pressure-Linked Equations (SIMPLE) algorithm. A new numerical methodology is applied to resolve all three layers in a single computational domain by establishing two temperature sets, defined according to the location inside the composite structure. Nusselt number behavior shows that for Rayleigh number up to 104 there is no significant variation between the laminar and turbulence models, although the differences increase when the flow gets more intense and/or the porous material becomes more permeable. When comparing the effects of Rayleigh number, Darcy number, porosity, and thermal conductivity ratio between the solid and the fluid on Nu, the results indicate that the solid-phase properties have a greater influence in enhancing the overall heat transferred through the cavity.  相似文献   

20.
In the present study, the heat transfer from a porous wrapped solid cylinder is considered. The heated cylinder is placed horizontally and is subjected to a uniform cross-flow. The aim is to investigate the heat transfer augmentation through the inclusion of a porous wrapper. The porous layer is of foam material with high porosity and thermal conductivity. The mixed convection is studied for different values of flow parameters such as Reynolds number (based on radius of solid cylinder and stream velocity), Grashof number, permeability and thermal conductivity of the porous material. The optimal value of porous layer thickness for heat transfer augmentation and its dependence on other properties of the porous foam is obtained. The flow field is analyzed through a single domain approach in which the porous layer is considered as a pseudo-fluid and the composite region as a continuum. A pressure correction based iterative algorithm is used for computation. Our results show that a thin porous wrapper of high thermal conductivity can enhance the rate of heat transfer substantially. Periodic vortex shedding is observed from the porous shrouded solid cylinder for high values of Reynolds number. The frequency of oscillation due to vortex shedding is dampened due to the presence of the porous coating. Beyond a critical value of the porous layer thickness, the average rate of heat transfer approaches asymptotically the value corresponding to the case where the heated cylinder is embedded in an unbounded porous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号