首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pool boiling enhancement through surface modification has garnered the attention of many researchers for extending the limits of heat flux dissipation. Simulated copper chips were used in a pool boiling setup with water boiling at atmospheric pressure. Heat transfer performance of different microchanneled surfaces was compared to that of a plain surface. The results of the study showed that the mechanism at work for the bubble dynamics was the ability of the surface to pull liquid through the channels to induce heat transfer. Geometrical trends were observed from the study as well with the wider and deeper channels and thinner finned surfaces showing the best heat transfer results. Without reaching the critical heat flux condition, the best performing chip dissipated a heat flux of 244 W/cm2 corresponding to a record heat transfer coefficient of 269 kW/m2 K.  相似文献   

2.
The performance of two evaporatively cooled heat exchangers is investigated under similar operating conditions of air flow rates and inlet hot water temperatures. The heat exchangers are plain and plate-finned circular tube types which occupy the same volume. Spray water, which is circulated in a closed circuit, is injected onto the exposed surfaces of the tubes and fins. The contact between air and spray water results in evaporative heat transfer. The tubes are copper, 10 mm o.d. The finned configuration is constructed by introducing 0.5 mm thick copper plates between the tubes, with a total area ratio of four. A substantial increase in heat transfer takes place for the plate-finned tubes. The increase is 92–140% for air velocities from 1.66 to 3.57 m s−1. A model is used to calculate the thermal performance of the plain and finned tubes assuming a constant spray water temperature in the heat exchanger. The wet-finned surfaces show low fin efficiency compared with dry surfaces. An energy index defined as the ratio of volumetric thermal conductance to air pressure drop per unit length is found to be close for the two heat exchangers. This reveals higher thermal utilisation of the occupied volume by the finned tubes with the same energy index.  相似文献   

3.
Pool boiling heat transfer coefficients of dilute stabilized Al2O3–ethyleneglycol nanofluids as possible coolant fluid are experimentally quantified. The influence of different parameters such as heat flux, heating surface nano-roughness, concentration of nanofluids and fouling resistance on the pool boiling heat transfer coefficient of alumina nanofluids has experimentally been investigated and briefly discussed. Results demonstrated that there are two heat transfer regions with different mechanisms namely free convection and nucleate boiling heat transfer. Studies on the influence of parameter demonstrated that with increasing the heat flux, the pool boiling heat transfer coefficient of nanofluids significantly increases. In contrast, with increasing the concentration of nanofluid, due to the deposition of nanoparticles on the surface, the average roughness of the surface and the heat transfer coefficient dramatically deteriorate, while a significant increase in fouling resistance is reported. Also, studies reveal asymptotic and rectilinear behaviors of fouling resistance parameter in nucleate boiling and free convective domains.  相似文献   

4.
ABSTRACT

Nanostructured microporous surfaces were electrodeposited at various electrolyte temperatures on copper substrate to investigate the saturated pool boiling enhancement of distilled water at atmospheric pressure. Surface structure topography and wickability were analyzed to investigate their relation to critical heat flux. Scanning electron microscope showed that the micro-clusters have nanostructures from cubic at 5°C to dendritic at 60°C electrolyte temperature. Rate-of-rise experiments demonstrated that dendritic copper structure has the best capillary performance. The experimental results of pool boiling heat transfer indicate that the critical heat flux increased with surface wickability. Electrodeposited porous surface in hot electrolyte showed the highest critical heat flux and heat transfer coefficient of the 124 W/cm2 and 17 W/cm2K, respectively, which is 50% and 270% higher than that of plain surface. However, the two-step electrodeposition and annealing were used in fabrication of surfaces, but the mechanical strength of layer needs more improvement by changing the electrochemical process parameters.  相似文献   

5.
Abstract

Crude oil fouling of a shell-and-tube heat exchanger sized according to TEMA standard is compared to a No-Foul design under industrial operating conditions. For similar operating conditions, TEMA and No-Foul heat exchangers have the same behavior regarding fouling. Since the No-Foul one has less tubes by design for the same heat duty, shear stress is increased. Consequently, the No-Foul heat exchanger is less prone to fouling at the same throughput. Impact of tube bundle geometry is then investigated. Helically finned tubes are compared to plain tubes in the No-Foul heat exchanger. Under similar operating conditions, fouling rates measured are up to an order of magnitude lower than plain tubes (respectively 10?11 and 10?10 m2 K/J). However, pressure drop across the tube-side in both No-Foul plain and finned setup are increased in comparison to the TEMA heat-exchanger.  相似文献   

6.
Deposition of salts on heat transfer surfaces in thermal desalination plants can lead to operational failure. Scale removal can occur by applying a thermal shock, which is a sudden decrease in the heating process. The difference in thermal expansion between the heat transfer surface and the deposit layer plays a key role in the thermal shock process. The objective of this research is to determine experimentally the minimum temperature of the heating surface in desalination units, such that the thermal shock is still applicable. The minimum heating temperature is important for minimization of heat losses. An experimental setup has been designed and developed, and it consists of an oil tank in which oil is heated by electrical heaters. The heated oil is circulated by a gear pump to the steam generator, which contains the water to be desalinated, that is, a CaSO4 solution, at atmospheric pressure. The water is heated and converted into steam by the hot oil leaving the salts behind, that is, the fouling layer, on the tubes of the steam generator. A thermal shock is applied when the asymptotic behavior is approached, such that the flow of the hot oil is suddenly stopped for a short period of time before resuming it again. The minimum heating temperature has been determined for two types of tubes: stainless steel and copper, and at a salt concentration of 2 g/L. The minimum heating oil temperature that allows the applicability of the thermal shock is 130°C when using copper tubes, and 140°C for stainless-steel tubes.  相似文献   

7.
The present research is an experimental study of the effects of pressure, subcooling, and non-condensable gas (air) on the pool nucleate boiling heat transfer performance of microporous enhanced finned surfaces. The test surfaces, solid copper blocks with 1-cm2 bases and 5×5 square pin-fin arrays of 2, 4 and 8 mm fin lengths, were immersed in FC-72. The test conditions included an absolute pressure range of 30-150 kPa and a subcooling range of 0 (saturation) to 50 K. Effects of these parameters on nucleate boiling and critical heat flux (CHF) were investigated. In addition, differences between pure subcooled and gas-saturated conditions as well as horizontal and vertical base orientations were also investigated. Results showed that, in general, the effects of pressure and subcooling on both nucleate boiling and CHF were consistent with previously tested flat surface results, however, subcooling was found to significantly affect the high heat flux region of the microporous finned surfaces nucleate boiling curves. The relative enhancement of CHF from increased subcooling was greater for the microporous surface than the plain surface but less than a microporous flat surface. The horizontal orientation (horizontal base/vertical fins) was found to be slightly better than the vertical orientation (vertical base/horizontal fins). Correlations for both nucleate boiling and CHF for the microporous surfaces were also developed.  相似文献   

8.
An experimental test rig for study of the pooling-boiling heat transfer performance of pure and mixed refrigerants was designed and established. The test section is a horizontal tube bundle evaporator with nine mechanically fabricated porous surface tubes in a triangular layout. With this test system, the heat transfer coefficients of the nucleate boiling in the evaporator were measured for R22, R407c, and R410a. Extensive experimental measures were made for those pure and mixed refrigerants at different heat fluxes from 10 kW m?2 to 43 kW m?2 at saturation temperature of 9°C. Comprehensive measured data are presented in this paper. From experimental results, it is found that the pool boiling heat transfer coefficient increases with increasing the heat flux. It is also found that boiling heat transfer coefficients for R410a are 1.25–1.81 times and 6.33–7.02 times higher than that for R22 and R407c, respectively. The experimental correlations for the pool boiling heat transfer coefficients of R22, R407c, and R410a on the present enhanced tubes bundle are developed. The thermal resistance analysis reveals that the thermal resistance of the water side is a controlling factor for the evaporator for R22 and R410a. However, for R407c, the thermal resistance of the refrigerant side is slightly higher than that of the water side. To further improve the overall heat transfer coefficient in the evaporator of R22 and R410a, the enhancement for both the inside and outside is equally important, and the effectively enhanced boiling surface must be developed for the evaporator of R407c.  相似文献   

9.
《传热工程》2012,33(9):828-834
Experiments were conducted for pool boiling on the outside of 8 × 3 (eight rows and three columns) plain and coated tube (surface roughness = 8.279 μm) bundles for three different pitch distances with the distinct objective to study the behavior and the enhancement of boiling heat transfer in horizontal staggered tube bundles (of plain and coated tubes for different equilateral triangular arrangements) with heat flux values ranging from ~12 to 45 kW/m2. At higher heat fluxes, coated and plain tube bundles had almost similar bundle average heat transfer coefficients at a given pitch distance, while at lower heat fluxes, the coated tube bundles have higher bundle average heat transfer coefficients as compared to that of the plain tube bundle. The coated tube bundles with the minimum pitch to diameter ratio of 1.4 exhibited the maximum bundle average heat transfer coefficients. The present study concludes that the bundle factor needs to be considered in the design of flooded evaporators.  相似文献   

10.
U型管蒸汽发生器的壳侧沉积了来自二回路系统中的腐蚀产物,结垢导致热量聚积在金属换热管上,容易造成垢下热点腐蚀,危害设备安全。为了明确结垢对蒸汽发生器传热性能的影响,本研究基于仿真平台APROS建立了U型管蒸汽发生器的分布式模型,并根据已公开论文中的数据进行了模型准确性验证;推导了污垢热阻与表面换热系数之间的关系式,分析了不同结垢厚度、位置对U型管蒸汽发生器换热区域的传热管壁面温度、流体温度、传热系数、热流密度等的影响程度。研究结果表明:随着结垢程度的加剧,蒸汽发生器的换热效率不断降低,出口蒸汽品质不断下降;结垢对沸腾段换热效率的影响比对过冷段换热效率的影响更大。  相似文献   

11.
The heat transfer of pool boiling in bead packed porous layers was experimentally investigated to analyze the effects of the bead material, bead diameter and the layer number of the porous bed on the transport of flux and the heat transfer coefficients. The glass and copper bead, the bead sizes of 4 mm and 6 mm as well as the bead packed porous structures ranging from one to three layers were chosen in the experiments. The pool boiling heat transfer in the bead packed porous structures and that on the plain surface were compared to analyze the enhancement of pool boiling heat transfer while the bead packed porous layers were employed. The maximum relative error between the collected experimental data of the pure water on a plain surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12%. Besides, the boiling bubble generation, integration and departure have a great effect on the pool boiling and were recorded with a camera in the bead stacked porous structures of the different layers and materials at different heat flux. All these results should be taken into account for the promotion and application of bead packed porous structures in pool boiling to enhance the heat transfer.  相似文献   

12.
通过在直径为12 mm的沸腾表面进行的多壁碳纳米管阿拉伯树胶水溶液的大容积沸腾实验,研究其沸腾传热特性。纳米流体的沸腾传热效果弱于阿拉伯树胶水溶液,烧毁点的过热度增加而临界热流密度减小,同时,阿拉伯树胶水溶液的传热效果劣于水。纳米颗粒在沸腾加热表面富集、结垢引起液体密度、沸腾表面上活化核心数目的变化,随传热时间的延长,垢层结构包括毛细孔直径、空隙率、垢层厚度不断发生变化,进而引起蒸汽在毛细孔中的流动阻力不断增加、加热表面和垢层间热阻增加,沸腾表面的活化核心数目减小,阿拉伯树胶在蒸发表面的局部富集、黏度大大增加,最终导致沸腾传热恶化。  相似文献   

13.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998  相似文献   

14.
A new falling film heat transfer test facility has been built for the measurement of local heat transfer coefficients on a vertical array of horizontal tubes, including flow visualization capabilities, for use with refrigerants. Presently, the facility has been used for evaporation tests on four types of tubes at three tube pitches and three nominal heat flux levels for R-134a at 5°C. A new method for determining local heat transfer coefficients using hot water heating has been applied, and test results for a wide range of liquid film Reynolds numbers have been measured for arrays made of plain, Turbo-BII HP, Gewa-B, and High-Flux tubes. The results show that there is a transition to partial dryout as the film Reynolds number is reduced, marked by a sharp falloff in heat transfer. Above this transition, the heat transfer coefficients are nearly insensitive to the film Reynolds number, apparently because vigorous nucleate boiling is always seen in the liquid film. The corresponding nucleate pool boiling data for the four types of tubes were also measured for direct comparison purposes. Overall, about 15,000 local heat transfer data points were obtained in this study as a function of heat flux, film Reynolds number, tube spacing, and type.  相似文献   

15.
为实现节能降耗,开发了多种强化沸腾传热的高效换热管。以水为工质,在0.1MPa下对垂直光管、烧结多孔管和T槽管进行了池沸腾传热实验研究,并分析了沿管子轴向的温度分布。实验结果表明,烧结多孔管与T槽管能显著降低起始沸腾过热度、强化沸腾传热:烧结多孔管和T槽管的起始沸腾过热度比光管的低1.5K左右;烧结多孔管和T槽管的核态沸腾传热系数分别为光管的2.4~3.2倍和1.6~2.0倍。此外,烧结多孔管和T槽管能降低相同热流密度下的壁面温度,且有利于降低管子轴向的温差。  相似文献   

16.
ABSTRACT

The pool boiling performance plays a key role in the development of high heat flux dissipating applications. The high critical heat flux and low wall superheat are two of the critical factors that affect the long-term life of devices. In this paper, enhanced pool boiling performance can be achieved by well-designed microchannels in copper surfaces using a precision diamond dicing method. The microchannel patterned surface with the channel length of 0.4 mm obtains a critical heat flux of 169.8 W/cm2, which has a 193% enhancement compared to the plain surface. Besides, the extremely low wall superheat of 3 K has been achieved, and thus the heat transfer coefficient reaches 51.8 W/cm2·K, about 738% larger than that of the plain surface. Herein, the microcavity has increased the nucleation site, the surface can promote the bubbles escape, and then the channel can continuously supply the liquid. Hence, the extremely low wall superheat at high heat flux occurs due to the rapid bubble departure and enhanced capillary feeding of liquid replenishment to active nucleation sites on the surface. The above results provide an effective way for the realization of high-performance two-phase microchannel patterned heat sinks via optimizing the microstructure geometry.  相似文献   

17.
Nucleate pool boiling of Al2O3 based aqueous nanofluid on flat plate heater has been studied experimentally. For boiling of nanofluid (< 0.1 vol.%) on heating surface with ratio of average surface roughness to average diameter of particles much less than unity when boiling continue to CHF, the heat transfer coefficient of nanofluid boiling reduces while critical heat flux (CHF) increases. CHF enhancement increased with volume fraction of nanoparticles. Atomic force microscope (AFM) images from boiling surface showed that after boiling of nanofluid the surface roughness increases or decreases depending on initial condition of heater surface. Changes in boiling surface topology during different regions of boiling, wettability and thermal resistance of heater surface owing to nanoparticles deposition cause to variations in nanofluids boiling performance.  相似文献   

18.
ABSTRACT

The paper presents thermal and flow analyses of the boiling process of R507, R410 and R407 C refrigerants inside vertical tubes (21 mm) with coiled-wire inserts and various coil diameters (20; 20.5 mm), coil pitches (26; 44 mm) and wire diameters (1.5; 2 mm). The study differs from other publications as regards the conditions under which the experiment was conducted. It focuses on the boiling process in two long vertical tube sections (2 m), paired in an in-line arrangement. The study was conducted within a moderate range of mass flux densities 80–240 kgm?2s?1 and at low heat flux densities 5–11 kWm?2, corresponding to the operating conditions of air coolers. The study examined the influence of vapour quality, mass flux density, geometrical parameters of the inserts and the impact of temperature glide on heat transfer coefficient and flow resistance increases as compared with a plain tube. The obtained increase ratios of heat transfer coefficients amounted to 1.1-1.7 for an azeotropic agent and to 1.1-1.3 for zeotropic agents, with the relative increase in flow resistances amounting to 1.8-4.5. New equations are proposed in the paper for the calculation of heat transfer coefficient and flow resistance values for boiling inside vertical tubes with spiral inserts.  相似文献   

19.
An experimental study on pool boiling heat transfer from finned copper surfaces immersed in a saturated dielectric liquid (Galden HT-55) is presented. Two extended surfaces of different dimensions were tested using vertical and horizontal orientations. The effects of nonboiling waiting period, pressure and spine dimensions on boiling behavior were examined.A marked enhancement of heat transfer performance was observed on passing from plane to extended surfaces. Increasing the pressure improved the heat transfer coefficient and critical heat flux. The nonboiling period, orientation and pressure significantly influenced the boiling incipience and the hysteresis phenomenon that accompanies increasing and decreasing heat fluxes. Experimental data are expressed in terms of enhancement ratios of extended surfaces as a function of base surface superheat and pressure.  相似文献   

20.
The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are investigated to determine the important parameters' effects on the heat transfer coefficient and also to have reliable empirical correlations based on the neural network analysis. Nanofluids with various concentrations of 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. The horizontal circular test plate, made from copper with different roughness values of 0.2, 2.5 and 4 μm, is used as a heating surface. The artificial neural network (ANN) training sets have the experimental data of nucleate pool boiling tests, including temperature differences between the temperatures of the average heater surface and the liquid saturation from 5.8 to 25.21 K, heat fluxes from 28.14 to 948.03 kW m− 2. The pool boiling heat transfer coefficient is calculated using the measured results such as current, voltage, and temperatures from the experiments. Input of the ANNs are the 8 numbers of dimensional and dimensionless values of the test section, such as thermal conductivity, particle size, physical properties of the fluid, surface roughness, concentration rate of nanoparticles and wall superheating, while the outputs of the ANNs are the heat flux and experimental pool boiling heat transfer coefficient from the analysis. The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are modeled to decide the best approach, using several ANN methods such as multi-layer perceptron (MLP), generalized regression neural network (GRNN) and radial basis networks (RBF). Elimination process of the ANN methods is performed together with the copper and aluminum test sections by means of a 4-fold cross validation algorithm. The ANNs performances are measured by mean relative error criteria with the use of unknown test sets. The performance of the method of MLP with 10-20-1 architecture, GRNN with the spread coefficient 0.7 and RBFs with the spread coefficient of 1000 and a hidden layer neuron number of 80 are found to be in good agreement, predicting the experimental pool boiling heat transfer coefficient with deviations within the range of ± 5% for all tested conditions. Dependency of output of the ANNs from input values is investigated and new ANN based heat transfer coefficient correlations are developed, taking into account the input parameters of ANNs in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号