共查询到20条相似文献,搜索用时 15 毫秒
1.
The simultaneous design and specification of heat exchangers of the plate-and-frame type is analyzed. A pictorial representation of the design space is used to guide the designer toward the selection of the geometry that best meets the heat duty within the limitations of pressure drop. The design space is represented by a bar plot where the number of thermal plates is plotted for three conditions: (1) for fully meeting the required heat load, (2) for fully absorbing the allowable pressure drop in the cold stream, and (3) for fully absorbing the allowable pressure drop in the hot stream. This type of plot is suitable for representing the design space, given the discrete nature of the plate geometrical characteristics, such as effective plate length and plate width. Applications of the use of bypasses as a design strategy are also presented. 相似文献
2.
A rapid sizing methodology for compact heat exchangers of the spiral plate type is presented. The methodology allows for the determination of the exchanger geometry such that full pressure drop utilization is achieved on both streams. This is done by considering plate width and plate spacing as continuous variables. The resulting values are the basis for selecting the final exchanger dimensions according to standard dimensions. The design approach makes use of empirical correlations for the calculation of heat transfer coefficient and friction factor based on average curvature. The approach is demonstrated using two case studies. 相似文献
3.
4.
Thermodynamic and Economic Optimization of Plate Fin Heat Exchangers Using the Bees Algorithm
下载免费PDF全文

This study presents the successful application of the bees algorithm (BA) for optimal design of a cross‐flow plate fin heat exchanger by offset strip fins. The ε – NTU method is used to approximate the heat exchanger effectiveness and pressure drop. Two different objective functions including the minimization of total annual cost (sum of investment and operational costs) and total number of entropy generation units for certain heat duty required under given space constraints are considered as targets of optimization separately. Based on the applications, seven design parameters (heat exchanger length at hot and cold sides, fin height, fin frequency, fin thickness, fin‐strip length, and number of hot side layers) are selected as optimization variables. Two examples from the literature are presented to illustrate the efficiency and accuracy of the proposed algorithm. Results showed that the BA can detect an optimum configuration with higher speed (short computational time) and accuracy compared to the imperialist competitive algorithm (ICA) and the genetic algorithm (GA). © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 427–446, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21087 相似文献
5.
Cooling water costs can often be reduced by utilizing impure sources of water, such as the sea. The use of seawater generally involves a closed-cycle freshwater primary circuit, a type of cooling that, although saving on water, requires special design techniques in order to optimize the process. These techniques are discussed and examples are given of large and small installations currently in operation. 相似文献
6.
7.
8.
9.
In this article, a multi-objective exergy-based optimization through a genetic algorithm method is conducted to study and improve the performance of shell-and-tube type heat recovery heat exchangers, by considering two key parameters, such as exergy efficiency and cost. The total cost includes the capital investment for equipment (heat exchanger surface area) and operating cost (energy expenditures related to pumping). The design parameters of this study are chosen as tube arrangement, tube diameters, tube pitch ratio, tube length, tube number, baffle spacing ratio, and baffle cut ratio. In addition, for optimal design of a shell-and-tube heat exchanger, the method and Bell–Delaware procedure are followed to estimate its pressure drop and heat transfer coefficient. A fast and elitist nondominated sorting genetic algorithm (NSGA-II) with continuous and discrete variables is applied to obtain maximum exergy efficiency with minimum exergy destruction and minimum total cost as two objective functions. The results of optimal designs are a set of multiple optimum solutions, called “Pareto optimal solutions.” The results clearly reveal the conflict between two objective functions and also any geometrical changes that increase the exergy efficiency (decrease the exergy destruction) lead to an increase in the total cost and vice versa. In addition, optimization of the heat exchanger based on exergy analysis revealed that irreversibility like pressure drop and high temperature differences between the hot and cold stream play a key role in exergy destruction. Therefore, increasing the component efficiency of a shell-and-tube heat exchanger increases the cost of heat exchanger. Finally, the sensitivity analysis of change in optimum exergy efficiency, exergy destruction, and total cost with change in decision variables of the shell-and-tube heat exchanger is also performed. 相似文献
10.
套片式换热器的管束排列形式一般都是叉排,顺排非常少见。由于顺排形式的套片式换热器通常比叉排的流动阻力更小,因而对一些流动阻力有限制的场合,可以考虑使用顺排形式的套片式换热器。为论证这一点,对某种结构形式的顺排套片式换热器和叉排套片式换热器的热力性能进行了对比研究。为便于对比、分析,两个换热器试件的纵向管间距及管排数设计成相等。结果显示:两个试件的热力性能非常接近。分析表明,在某些应用场合,套片式换热器排列成顺排是更合适的选择。图7参6 相似文献
11.
12.
Plate heat exchangers were first developed about 100 years ago but have won increasing interest during the last two decades, primarily due to the development of methods of manufacturing brazed plate heat exchangers. This type of heat exchanger offers very good heat transfer performance in single-phase flow as well as in evaporation and condensation. Part of the reason is the small hydraulic diameters, typically being less than 5 mm. Other advantages of plate heat exchangers are the extremely compact design and the efficient use of the construction material. In spite of their long use, the calculation methods for predicting heat transfer and pressure drop are not widely known. It is the purpose of this article to present such calculation methods for single-phase flow and for flow boiling and to discuss some of the specifics of this type of heat exchangers. 相似文献
13.
14.
Adiabatic flow visualization in a chevron plate, a 1:1 aspect ratio bumpy plate, and a 2:1 aspect ratio bumpy plate heat exchangers were investigated for vertical upward flow with R134a. Qualities ranging from 5% to 90% and mass fluxes of 60, 90, and 125 kg/m2-s were investigated. The flow visualization experiments were conducted at a 10°C inlet temperature. Four flow regimes were observed for the flat plate geometries investigated: bubbly flow, rough annular flow, smooth annular flow, and mist flow. The four flow regimes are mapped out on a mass flux versus quality basis for each geometry. The chevron geometry was seen to undergo flow transitions at lower qualities and mass fluxes than the bumpy plate geometries, and the 2:1 aspect ratio bumpy plate geometry was seen to undergo flow transitions at lower qualities and mass fluxes than the 1:1 aspect ratio bumpy plate geometry. 相似文献
15.
Ertan Buyruk 《传热工程》2018,39(15):1392-1404
In the present study, the potential of rectangular fins with different fin types of inner zigzag-flat-outer zigzag (B-type) and outer zigzag-flat-outer zigzag (C-type) and with different fin angles of 30° and 90° for 2 mm fin height and 10 mm offset from the horizontal direction for heat transfer enhancement with the use of a conjugated heat transfer approach and for pressure drop in a plate fin heat exchanger is numerically evaluated. The rectangular fins are located on a flat plate channel (A-type). The numerical computations are performed by solving a steady, three-dimensional Navier–Stokes equation and an energy equation by using FLUENT software program. Air is taken as working fluid. The study is carried out at Reynolds number of 400 and inlet temperatures, velocities of cold and hot air are fixed as 300 K, 600 K and 1.338 m.s?1, 0.69 m.s?1, respectively. This study presents new fin geometries which have not been researched in the literature for plate fin heat exchangers. The results show that while the heat transfer is increased by about 10% at the exit of a channel with the fin type of C, it is increased up to 8% for the fin angle of 90° when compared to a channel with A-type under the counter flow. The heat transfer enhancements for different values of Reynolds number and for varying fin heights, fin intervals and also temperature distributions of fluids are investigated for parallel and counter flow. 相似文献
16.
17.
This article describes particulate fouling experiments performed on small-scale and full-scale plate heat exchangers for three different corrugation angles (30 deg, 45 deg and 60 deg). The velocity effect has been studied as well as the particle type and concentration effects. The test duration ranges between 20 and 1,500 h in order to reach asymptotic behavior. The results clearly indicate that the corrugation angle has a major influence on the asymptotic fouling resistance. Increasing the corrugation angle leads to lower values for the fouling resistance. Furthermore, for a given corrugation angle, the asymptotic fouling resistance is inversely proportional to the velocity squared. Finally, the asymptotic fouling resistance is proportional to the particle concentration. Fouling mitigation can be obtained by taking into account at the design stage the heat exchanger geometry and fluid velocity. 相似文献
18.
Multilayered heat exchangers were analyzed theoretically and their heat transfer characteristics were clarified. The problem was treated as a two-dimensional, conjugated one with three phases-two fully developed laminar flows and the exchanger wall. From numerical results, the exchanger effectiveness was found to be definitely influenced by the following parameters: Graetz number, heat capacity flow rate ratio, dimensionless wall thickness, and conductance ratios between fluid and wall and between both fluids. Examination of mixed-mean temperature distributions in the exchanger showed that longitudinal wall conduction significantly reduces exchanger effectiveness in the low-Graetz-number region. Experimental results were in fairly good agreement with theoretical predictions. 相似文献
19.