首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was carried out to examine the effect of the waffle height on air-side performance of typical fin-and-tube heat exchangers under dehumidifying conditions. The waffle heights examined in the present study are 1.18 and 1.58 mm, respectively. A total of 12 samples of heat exchangers, including eight having wavy fin and four having plain fin configurations were tested. The test results indicated that the effect of waffle height on the heat transfer enhancement ratio, compared to the plain-fin counterpart, is pronounced only for smaller fin pitch and larger waffle height, while its effect on the pressure drop is very pronounced throughout the test range, and is almost two times higher than in dry conditions.  相似文献   

2.
Ertan Buyruk 《传热工程》2018,39(15):1392-1404
In the present study, the potential of rectangular fins with different fin types of inner zigzag-flat-outer zigzag (B-type) and outer zigzag-flat-outer zigzag (C-type) and with different fin angles of 30° and 90° for 2 mm fin height and 10 mm offset from the horizontal direction for heat transfer enhancement with the use of a conjugated heat transfer approach and for pressure drop in a plate fin heat exchanger is numerically evaluated. The rectangular fins are located on a flat plate channel (A-type). The numerical computations are performed by solving a steady, three-dimensional Navier–Stokes equation and an energy equation by using FLUENT software program. Air is taken as working fluid. The study is carried out at Reynolds number of 400 and inlet temperatures, velocities of cold and hot air are fixed as 300 K, 600 K and 1.338 m.s?1, 0.69 m.s?1, respectively. This study presents new fin geometries which have not been researched in the literature for plate fin heat exchangers. The results show that while the heat transfer is increased by about 10% at the exit of a channel with the fin type of C, it is increased up to 8% for the fin angle of 90° when compared to a channel with A-type under the counter flow. The heat transfer enhancements for different values of Reynolds number and for varying fin heights, fin intervals and also temperature distributions of fluids are investigated for parallel and counter flow.  相似文献   

3.
肖洪 《节能技术》2006,24(3):265-267
本文对椭圆管与扁管管板式换热器的充分发展的周期性层流流动与换热特性进行了数值计算分析,给出了在400相似文献   

4.
折齿型螺旋翅片管是在平齿型螺旋翅片管的基础上改进而成的一种新型翅片管.为获取其在错列布置下的传热和阻力特性的变化规律,对5组试件进行了模化试验.结果表明:当pf/do在0.096~0.134时,空气侧Nu数随翅片螺距的增大而增大,当pf/do在0.134~0.233时,翅片螺距对于Nu数影响很小;Eu数随着翅片螺距的增大而减小;当Hf/do在0.365~0.471时,存在最优翅片高度,使得空气侧Nu数最大;Eu数随着翅片高度的增大而增大.  相似文献   

5.
To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel heli...  相似文献   

6.
In this study, the effect of holes placed on perforated finned heat exchangers on convective heat transfer was experimentally investigated. Six-millimeter-diameter holes were opened on each circular fin on a heating tube in order to increase convective heat transfer. These holes were placed on the circular fins in such a way as to follow each other at the same chosen angle. The holes created turbulence in a region near the heating tube surface on the bottom of the fin. Experiments were then performed to analyze the effect of this turbulence on heat transfer and pressure drop. These experiments were carried out at five different fin spacings at the angular locations of 30° and 60° in order to determine the optimum fin spacing. Moreover, further experiments were carried out for counterflow and parallel-flow arrangements to determine the effects of the flow directions of the heating fluid and heated fluid. Results show an increase in Nusselt number with increasing modified Reynolds number. In addition, when different fin spacing to heating tube external diameter ratios were examined, at a ratio of 0.414 and angular locations of 30° and 60°, 11% and 8.6% increase in heat transfer were obtained, respectively, for parallel-flow arrangement compared to counterflow. For parallel flow, pressure drop values were 3.5% and 3.8% lower at 30° and 60°, respectively.  相似文献   

7.
Abstract

The behavior of air flows in complex Heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact Heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in Heat transfer enhancement strategies.  相似文献   

8.
This paper presents a simple, efficient, robust, optimum design methodology for the design of a high heat transfer and low pressure drop cross-flow shell and tube heat exchanger with integral low fin tubes. This type of heat exchanger has the potential for application in the design of coolers in hypersonic wind tunnels to cool the air that emerges from the diffuser section of the wind tunnel. The methodology described here allows for the design and optimization of any type of heat exchanger that has constraints on pressure drop, as well as the design of an exchanger for very low pressure drop on the shell side fluid.  相似文献   

9.
This article presents a model for the analysis of fin-and-tube heat exchangers, focusing on the heat conduction processes within the finned tube bundle. A cutting cell discretization has been proposed for the fins to adapt to the tubes shape, while the tubes have been discretized in axial and angular directions to consider complex heat transfer coefficient variations. A set of results is given on fin efficiency and transient response comparing with well-established methods. A full-scale condenser is also analyzed as an illustrative result, detecting important thermal bridges through the fins.  相似文献   

10.
High-porosity metal foams, with novel thermal, mechanical, electrical, and acoustic properties, are being more widely used in various industrial applications. In this paper, open-cell aluminum foam is considered as a highly compact replacement for conventional louver fins in brazed aluminum heat exchangers. A model based on the ?-NTU method is developed to compare the flat-tube, serpentine louver-fin heat exchanger to the flat-tube metal-foam heat exchanger. The two heat exchangers are subjected to identical thermal-hydraulic requirements, and volume, mass, and cost of the metal-foam and louver-fin designs are compared. The results show that the same performance is achieved using the metal-foam heat exchanger but a lighter and smaller heat exchanger is required. However, the cost of the metal-foam heat exchanger is currently much higher than that of the louver-fin heat exchanger, because of the high price of metal foams. If the price of metal foam falls to equal that of louver-fin stock (per unit mass), then the metal-foam heat exchanger will be less expensive, smaller, and lighter than the louver-fin heat exchanger, with identical thermal performance.  相似文献   

11.
Extended surfaces are used in a variety of heat transfer applications owing to their ability in reducing the convection resistance by exposing a large surface area to the surrounding fluid. Surface modification in the form of perforations is a passive method of increasing the heat transfer rates with the additional benefit of weight reduction. This work deals with numerical investigation of heat transfer and friction from a perforated fin (with and without slot) subjected to forced convection. The perforated fin with slot has been found to have a maximum enhancement in heat transfer with the simultaneous increase in frictional losses versus that of a solid fin. Further, the perforated fin without slot has been able to transfer heat at a relatively higher rate with a considerable reduction in energy loss due to friction in comparison to a solid fin.  相似文献   

12.
In this paper an analysis of laminar heat transfer and fluid flow in a wavy fin-and-tube heat exchanger has been carried out. Three-dimensional (3D) numerical simulation results of a circular tube heat exchanger were compared with published numerical and experimental results. The computational fluid dynamics (CFD) procedure was validated by comparing average Nusselt numbers, and good agreement between published and calculated results has been accomplished. The influence of inlet air velocity, varying from 0.5 to 5 m s?1, as well as fin pitch, varying from 0.4 to 4 mm, on heat transfer and pressure drop conditions has been studied. The results have shown that there is an optimal fin pitch for each air velocity, which gives the best heat exchanger performance from the heat transfer point of view.  相似文献   

13.
K. N. MURTY 《传热工程》2013,34(3-4):26-34
The heat transfer process in a split-flow heat exchanger designated as G type by TEMA standards is analyzed for two cases: with one tube pass and with two tube passes. Equations are presented for the shell fluid temperature distribution as a function of exchanger length or surface area. The thermal performance of the two-tube-pass exchanger is compared with those of a 1:1 counterflow exchanger and a one-pass split-flow exchanger. Results are presented in terms of temperature efficiency, reduced thermal flux (NTU), and thermal flow rate ratio.  相似文献   

14.
Yanhua Lai  Mingxin Lu  Qingwei Wang 《传热工程》2014,35(11-12):1137-1143
Plate-fin and tube heat exchangers are extensively studied both experimentally and numerically. However, data on the fluid flow and heat transfer in the exchanger passage with small diameter tubes have not been accumulated enough. With a large eddy simulation technique (LES), this study performs a detailed investigation of the fluid flow and heat transfer in a plate-and-tube channel with tubes of diameters as small as 5.2 mm. The conservation equations for mass, heat, and momentum were solved by the proposed LES model. It was found that the LES model is appropriate to predict the fluid flow and heat transfer. Compared to heat exchangers of larges tubes, the heat exchangers exhibit much higher heat transfer coefficients with small tubes. The fin efficiencies are improved with small tubes.  相似文献   

15.
A large-eddy simulation (LES) with dynamic subgrid-scale modeling is conducted to investigate flow over staggered parallel-plate fins and to depict turbulence effect on heat and mass transfer efficiency. Navier-Stokes equations for a low-Mach-number, weakly compressible formulation are solved using a second-order-accurate scheme in space and time. Calculations are carried out for Reynolds numbers Re ranging from 500 to 10,000. The results facilitate estimation of the flow topology and its evolution with regard to Re. Identification of coherent structures may bring about clear depiction of a particularly close relationship between heat transfer and turbulent flow field development. In addition, global heat and mass transfer correlations are estimated numerically and are found to be in reasonable agreement with previous experimental correlations.  相似文献   

16.
空冷凝汽器椭圆翅片椭圆管束外空气的流动与传热特性   总被引:7,自引:0,他引:7  
研究空冷凝汽器椭圆翅片椭圆管管束外空气的流动与传热特性,对火电站空冷岛的设计与运行具有重要意义.通过CFD模拟,获得了椭圆翅片椭圆管管束外冷却空气的流场和温度场,计算得到了空冷凝汽器冷却空气对流换热平均Nu和摩擦系数f随Re的变化规律,并采用最小二乘法拟合得到了相应的关联式.结果表明:随冷却空气流动Re的增大,Nu增大,f减小.  相似文献   

17.
Ashish Dixit 《传热工程》2013,34(16):1409-1416
Material removal from an extended surface in the form of perforations and slots is a proven technique to augment heat transfer rates with a considerable reduction in the surface weight. This work presents the outcomes of experimental investigation on heat transfer characteristics of a plate fin having grooves of various configurations on two broad faces. The experimental data pertaining to heat transfer have been collected by varying Reynolds number from 1500 to 5000, for transverse grooved, inclined grooved, V-grooved, and multi-V-grooved fin. The results of the grooved fin are compared with that of a smooth conventional fin to gauge the heat transfer performance of modified fin. The maximum enhancement in Nusselt number corresponds to the inclined groove fin, whereas the highest value of grooved fin effectiveness is obtained for the multi-V-grooved fin. The Nusselt number correlations are presented for different fin configurations tested in this work.  相似文献   

18.
This paper presents an improved prediction method for the heat transfer and pressure drop in the shell side of a horizontal shell and tube evaporator. The results from an experimental test program are used in which a wide range of evaporating two-phase shell side flow data was collected from a TEMA E-shell evaporator. The data are compared with shell side heat transfer coefficient and pressure drop models for homogeneous and stratified flow. The comparison suggests a deterioration in the heat transfer data at low mass fluxes consistent with a transition from homogeneous to stratified flow. The pressure drop data suggest a stratified flow across the full test range. A new model is presented that suggests the transition in the heat transfer data may be due to the extent of tube wetting in the upper tube bundle. The new model, which also takes into account the orientation of the shell side baffles, provides a vast improvement on the predictions of a homogenous type model. The new model would enable designers of shell side evaporators/reboilers to avoid operating conditions where poor heat transfer could be expected, and it would also enable changes in process conditions to be assessed for their implications on likely heat transfer performance.  相似文献   

19.
Elliptical fin-and-tube heat exchangers are commonly used in air conditioning,heating,refrigeration industries,and ventilation.This study numerically investigates the effect of vortex generators on the performance of elliptical fin-and-tube heat exchanger under different inclination angles.In this study,air flow that is in the transitional regime is selected as the working fluid.Reynolds numbers at the inlet are varied in a range of 1300 to 2100,and the shear stress transport k-ωturbulence model is selected to solve the non-closure of basic turbulence equations.The ellipticity ratios of the tubes which are used for the analysis are between 0.6 and 1.0,and the inclination angles are varied from 15°to 75°.The effects of different inclination angles of vortex generators on the Colburn factor j,friction factor f,and efficiency index j/f are analyzed.The friction and Colburn factors are observed to increase with increasing vortex generator inclination angles.It is found that the efficiency factors for a 15°vortex generator inclination angle at 0.6,0.7,0.8,and 0.9 ellipticity ratios improve compared to the corresponding cases with no vortex generator.However,the vortex generator cannot improve the efficiency factor of the circular tube heat exchanger.The 3 D CFD method employed by this study has great potential for use in optimally designing the arrangement of the vortex generators to enhance the performance of heat exchangers.  相似文献   

20.
The characteristic temperature in the definition of the fin side surface heat transfer coefficient of two tube bank fin heat exchangers is investigated in detail. The results reveal that if the average temperature of the fin side fluid is used in the definition of the fin side surface coefficient, a small discrepancy between the numerical and experimental results is obtained. The results not only give a technical definition of the characteristic temperature of the fin side surface heat transfer coefficient, but also imply that the discrepancy between experimental and numerical results may come from incorrect use of the characteristic temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号