共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphoric acid is a weak electrolyte with complex physical properties. This complexity combined with its industrial importance has necessitated intensive studies into its heat transfer behavior. In this investigation, pool boiling heat transfer coefficients of phosphoric acid solutions have been measured over a wide range of acid concentrations. The effects of various operating parameters such as heat flux, temperature, and acid concentration have been investigated. Also, the bubble departure diameter and the number of active nucleation sites for phosphoric acid solutions are compared with those for pure water under identical conditions. A model was developed for pool boiling heat transfer of phosphoric acid solutions, which can easily be adapted for other weak electrolyte solutions. In this model, the correct boiling temperature at the vapor/liquid interface is determined rather than applying an arbitrary correction to the boiling heat transfer coefficient. The proposed model is confirmed by comparison between calculated and experimental data. 相似文献
2.
A large number of studies of bubble growth rate and departure diameter have been reported in the literature. Because of uncertainty in defining the shape of an evolving interface, empirical constants are invariably used to match the model predictions with data. This is especially true when force balance is made on a vapor bubble to determine the departure diameter. In this paper, the results of an alternate approach based on a complete numerical simulation of the process are given. Single and multiple bubbles are considered for both pool and flow boiling. The simulations are based on the solution of the conservation equations of mass, momentum, and energy for both phases. Interface shape is captured through a level set function. A comparison of bubble shape during evolution, bubble diameter at departure, and bubble growth period is made with data from well-controlled experiments. Among other variables, the effect of magnitude of gravity and contact angle is explicitly investigated. 相似文献
3.
Nucleate boiling heat transfer of air-dissolved FC-72 on a micro-pin-finned surface was experimentally investigated in microgravity by utilizing the drop tower facility in Beijing. The dimensions of the silicon chips were 10 mm × 10 mm × 0.5 mm and on these, two kinds of micro-pin-fins with the dimensions of 30 × 30 × 60 μm3 and 50 × 50 × 120 μm3 (width × thickness × height, named PF30-60 and PF50-120) were fabricated by the dry etching technique. Nucleate pool boiling on a smooth surface was also studied under both Earth gravity and microgravity for comparison. In general, the micro-pin-fins showed better heat transfer performance when compared with a smooth surface, both under Earth gravity and microgravity. In microgravity, this is mainly due to the fact that bubbles generated on micro-pin-finned surface can depart from the heater surface continuously. For micro-pin-fins, the reduced-gravity critical heat flux was about two-thirds of that in the Earth gravity experiment, but almost three times as large as that for the smooth surface, which is larger than that in the terrestrial experiment. Under different gravity levels, PF50-120 shows a little better heat transfer than that of PF30-60, mainly due to larger heat transfer area. Besides, the fin gap of PF30-60 may generate a larger flow resistance for microconvection around the fin side walls, resulting in a lower heat transfer performance. 相似文献
4.
NucleatePoolBoilingofPureLiquidsandBinaryMixtures:PartI-AnalyticalModelforBoilingHeatTransferofPureLiquidsonSmoothTubesGuoqin... 相似文献
5.
The heat transfer of pool boiling in bead packed porous layers was experimentally investigated to analyze the effects of the bead material, bead diameter and the layer number of the porous bed on the transport of flux and the heat transfer coefficients. The glass and copper bead, the bead sizes of 4 mm and 6 mm as well as the bead packed porous structures ranging from one to three layers were chosen in the experiments. The pool boiling heat transfer in the bead packed porous structures and that on the plain surface were compared to analyze the enhancement of pool boiling heat transfer while the bead packed porous layers were employed. The maximum relative error between the collected experimental data of the pure water on a plain surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12%. Besides, the boiling bubble generation, integration and departure have a great effect on the pool boiling and were recorded with a camera in the bead stacked porous structures of the different layers and materials at different heat flux. All these results should be taken into account for the promotion and application of bead packed porous structures in pool boiling to enhance the heat transfer. 相似文献
6.
为分析单层石墨烯纳米片对核态池沸腾换热的影响机理,对基液为R141b、分散相为单层石墨烯纳米片的纳米制冷剂的核态池沸腾换热特征进行了测定,采用Hot Disk热物性分析仪和铂金板法分别测定了石墨烯纳米制冷剂的热导率和表面张力,采用接触角测量仪和扫描电子显微镜(SEM)观测了沸腾后加热表面的润湿性和形貌特征。实验中,单层石墨烯纳米片的质量百分含量(ω)为0.02%~0.50%,实验压力为一个标准大气压,热流密度为20~200 kW/m2。实验结果表明:单层石墨烯纳米片的加入,使制冷剂R141b的核态池沸腾换热得到强化;当ω=0.2%时,换热系数提高比例出现峰值,为57.7%。伴随ω的增加,石墨烯纳米制冷剂的热导率增大、表面张力减小,沸腾表面润湿性增强且微腔数先增后减,综合作用的结果导致存在一个最佳的单层石墨烯纳米片浓度(即ω=0.2%)使换热系数最高。 相似文献
7.
Surfaces with spatial wettability patterns have been proven to enhance heat transfer coefficient and critical heat flux in pool boiling. To understand the physical mechanism behind this phenomenon and obtain the correlation among some critical parameters (bubble departure frequency, bubble size, nucleation site density, surface tension), pool boiling experiments were conducted. A Pyrex glass with a layer of indium-tin-oxide was used as the substrate. Hydrophobic patterns will serve as nucleation sites. Experiments were conducted in deionized water under atmospheric pressure at a relatively low heat flux. The processes of nucleation, growth, and departure of individual bubbles were visualized by using a high speed camera through the bottom of the heater surface. It has been found that the patterned surface performed the best in heat transfer for subcooled pool boiling when compared with hydrophilic and hydrophobic surfaces. The nucleation site density of the biphilic surface was much higher, when compared with that of the homogeneous surface. The individual bubbles always nucleate on the edge of the hydrophobic and hydrophilic area, and then move onto the hydrophobic pattern. Most of the individual bubbles detach from the wettability patterned surface in the diameter range from 300 µm to 450 µm (around 77.3%). The bubble departure periods scatter in the range from 80 ms to 1500 ms. 相似文献
8.
Experiments were conducted on pool boiling heat transfer using dilute dispersions of CuO nanoparticles in distilled water at and above atmospheric pressure. Pool boiling characteristics of CuO nanofluid were studied at different pressures and concentrations. Characterization of the heating surface was done both qualitatively and quantitatively by taking the scanning electron microscopy (SEM) images and by subsequent measurement of surface roughness of the heater. SEM images of the heater surface showed nanoparticle deposition on the heater surface, suggesting surface modification. Thorough visualization showed microcavities on the heater surface, which provide an excellent location for nucleation sites enhancing heat transfer. However, these microcavities, once filled up with the suspended nanoparticles, reduced active nucleation sites, deteriorating the boiling heat transfer coefficient. Based on the experimental investigations it was concluded that there is an optimum thickness of nanoparticles coating at which heat flux is maximum and beyond this coating boiling heat transfer coefficient decreases. At higher pressures, boiling heat transfer coefficient and specific excess temperature remained nearly the same. This showed that pressure has negligible or no role to play in boiling heat transfer using nanofluids. 相似文献
9.
《传热工程》2012,33(1):1-16
AbstractMethane (R50) and ethane (R170) are the dominated components of natural gas and the important components in mixture refrigerants for the mixture Joule–Thomson refrigeration cycle. In this article, experimental investigations on nucleate pool boiling and flow boiling heat transfer characteristics of R50, R170, and their binary mixtures are presented. The effects of saturation pressure, heat flux, mass flux, concentration, and vapor quality on heat transfer coefficients are analyzed and discussed. Firstly, the pool boiling heat transfer data were compared with six well-known correlations. Labuntsov correlation shows the best agreement with a mean absolute relative deviation (MARD) of 11.3%. Secondly, a new flow boiling heat transfer correlation for pure fluids was proposed based on the asymptotic addition of forced convection and pool boiling. The modified enhancement factor and suppression factor were developed to account for their relative contribution. In addition, in order to consider the mass transfer resistance of mixtures, a new mixture factor was deduced. The new flow boiling heat transfer correlations can well predict the experimental data with the MARD of 9.5% for pure fluids and 8.3% for mixtures. 相似文献
10.
11.
12.
发动机冷却水腔内沸腾传热的模拟研究 总被引:1,自引:0,他引:1
从单相流观点出发研究了两种计算过冷流动沸腾传热的思路:分区描述法和叠加计算法.提出了两个基于分区描述法的沸腾模型A和沸腾模型B;修正了基于叠加计算法的Chen沸腾模型和BDL沸腾模型中对流传热项的计算方法.利用这些沸腾模型进行了缸盖鼻梁区冷却水腔沸腾传热的数值模拟,并与试验结果进行了对比分析.结果表明:采用分区描述法和叠加计算法进行发动机冷却水腔内过冷流动沸腾传热计算均是可行且有效的方法;采用沸腾模型A和修正的BDL模型的预测精度比另两个沸腾模型要高;提高流速和过冷度均能强化沸腾传热的能力,提高压力后则在更高的壁面温度下才出现沸腾传热. 相似文献
13.
Due to growing concerns over anthropogenic effects on the climate, there is increasing need to replace engineered fluids of high global warming potentials (GWPs), such as hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), with more environmentally friendly alternatives in thermal management systems. This article presents experimental data and compares various correlations for predicting the pool boiling heat transfer coefficient of a new low-GWP fluid, FK-649. Using a pressurized boiling facility with a smooth aluminum heater, the critical heat flux (CHF) and heat transfer coefficient were measured for the pool boiling of FK-649 at various saturation conditions. The commonly used refrigerant tetrafluoroethane (R-134a) is tested in the same pressurized facility to act as a benchmark for the new fluid. While R-134a exhibited a higher heat transfer coefficient and CHF, this behavior is expected from the fluid properties. Two-phase heat transfer performance of FK-649 is expected to be similar to that of the fluorocarbon FC-72. Experimental data are compared to predictions using the Rohsenow, Borishanskii–Mostinski, Stephan and Abdelsalam, Cooper, and Leiner correlations. Where applicable, empirical constants are obtained by using a least-squares fit to experimental data. The Rohsenow correlation yielded the best result with a new surface–fluid constant C s,f of 0.0037 for FK-649. 相似文献
14.
Abstract Boiling heat transfer (BHT) was investigated experimentally. Smooth copper walls were covered with single sphere layer and corresponding temperature difference and heat flux were measured. The results were compared with published data for several types of heating surfaces. Comparative analysis shows that surfaces covered with spheres have characteristics as good as the other systems, if not better. 相似文献
15.
In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m~2 and 20 kW/m~2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10℃ for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm. 相似文献
16.
The success of innovative fouling mitigation techniques such as ion implantation depends upon the early stage of scale formation on the heat transfer surface. This is because the first crystalline nuclei that appear on the surface during the initial period dictate how fouling would develop in latter stages. In this study, the initial period of deposition of calcium sulfate on heat transfer surfaces has been investigated under pool boiling conditions. The independent variables were heat flux and calcium sulfate concentration. The experimental results show that the time until the heat transfer coefficient reaches its intermediate maximum decreases with an increasing concentration and heat flux, and is also significantly affected by the surface finish. Neural network architectures were utilized to correlate the experimental results during the initial deposition period. A satisfactory agreement between predicted and measured heat transfer coefficients has been achieved with an average error of 8.7%. 相似文献
17.
Remarkably different behaviors are found when comparing micro-scale flow boiling heat transfer data by distinct authors, even under similar experimental conditions. Such differences are almost certainly related to the complexity of confined forced-flow boiling. Certain aspects of the phenomenon, which are negligible in the macro-scale, become surprisingly relevant when the system size becomes small. From the results reported in the literature on the thermal-fluid features of evaporating flows in small channels, the following study presents a discussion concerning convective boiling heat transfer, highlighting the aspects that are characteristic to confined two-phase flows. 相似文献
18.
NucleatePoolBoilingofPureLiquidsandBinaryMixtures:PartII-AnalyticalModelforBoilingHeatTransferofBinaryMixturesonSmoothTubesan... 相似文献
19.
为了更加准确地研究发动机水套内冷却液流动传热问题,在Mixture多相流基础上建立了一套适用于发动机水套沸腾传热的气液两相流模型。以某直列4缸汽油机为研究对象,通过试验对汽油机第4缸火力面温度进行测量,两相流与传统单相流模拟结果对比表明两相流准确性更高。在两相流模拟结果基础上找出了汽油机水套壁面高温危险区,并基于发动机水套的设计要求提出了优化方案。模拟结果表明:优化后水套内冷却液的流动与冷却更加均匀,水套壁面温度明显降低,传热效果得到了提升。本研究可为以后的发动机沸腾传热研究和冷却水套设计提供参考。 相似文献
20.
Dogan Ciloglu 《传热工程》2017,38(10):919-930
An experimental investigation of nucleate pool boiling heat transfer is carried out using SiO2 nanofluid in atmospheric pressure and saturated conditions. The results show that the nucleate boiling heat transfer coefficient (HTC) of the nanofluids is lower than that of deionized water, especially in high heat fluxes. In addition, the experimental results indicate that the critical heat flux (CHF) improves up to 45% with the increase of the nanoparticle volume concentration. Atomic force microscopy images from the boiling surface reveal that the nanoparticles are deposited on the heating surface during the nanofluid pool boiling experiments. It is found that the boiling HTC deteriorates as a result of the reduction in active nucleation sites and the formation of extra thermal resistance due to blocked vapor in the porous structures near the heating surface. Furthermore, the improvement of the surface wettability causes an increase in CHF. Based on the experimental investigations, it can be concluded that the changes in the properties of the boiling surface are mainly responsible for the variations in nanofluids boiling performance. 相似文献