首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow boiling in micro channels is attracting large attention since it leads to large heat transfer area per unit volume. Generated vapor bubbles in micro channels are elongated due to the restriction of channel wall, and thus slug flow becomes one of the main flow regimes. In slug flow, sequential bubbles are confined by the liquid slugs, and thin liquid film is formed between tube wall and bubble. Liquid film evaporation is one of the main heat transfer mechanisms in micro channels and liquid film thickness is a very important parameter which determines heat transfer coefficient. In the present study, liquid film thickness is measured by laser focus displacement meter under flow boiling condition and compared with the correlation proposed for an adiabatic flow. The relationship between liquid film thickness and heat transfer coefficient is also investigated. Initial liquid film thickness under flow boiling condition can be predicted well by the correlation proposed under adiabatic condition. Under flow boiling condition, liquid film surface fluctuates due to high vapor velocity and shows periodic pattern against time. Frequency of periodic pattern increases with heat flux. At low quality, heat transfer coefficients calculated from measured liquid film thickness show good accordance with heat transfer coefficients obtained directly from wall temperature measurements.  相似文献   

2.
Flow boiling in microchannels has received considerable attention from researchers worldwide in the last decade. A scaling analysis is presented to identify the relative effects of different forces on the boiling process at microscale. Based on this scaling analysis, the flow pattern transitions and stability for flow boiling of water and FC-77 are evaluated. From the insight gained through the careful visualization and thermal measurements by previous investigators, similarities between heat transfer around a nucleating bubble in pool boiling and in the elongated bubble/slug flow pattern in flow boiling are brought out. The roles of microlayer evaporation and transient conduction/microconvection are discussed. Furthermore, it is pointed out that the convective contribution cannot be ruled out on the basis of experimental data which shows no dependence of heat transfer coefficient on mass flow rate, since the low liquid flow rate during flow boiling in microchannels at low qualities leads to laminar flow, where heat transfer coefficient is essentially independent of the mass flow rate. Specific suggestions for future research to enhance the boiling heat transfer in microchannels are also provided.  相似文献   

3.
In the present study, the bubble growth, departure and the following flow pattern evolution during flow boiling in the mini-tube were visualized and quantitatively investigated, along with the simultaneous measurement of the local heat transfer coefficient around a specified nucleation site. Liquid nitrogen was employed as the working fluid and the test section was a segment of vertically upward quartz glass tube with the inner diameter range of 1.3–1.5 mm, which was coated by a layer of transparent ITO film as the heater on the outer surface. The growth rates of bubbles had similar and constant growth rate in two periods of time, i.e., before and after the bubbles departing from the nucleation site, which indicated the bubble growth was primarily governed by the inertial force. The bubble departure diameter and bubble period were investigated and the corresponding correlation was obtained based on the experimental data, which showed that the tube size of the mini-tube had no notable effect on the bubble departure and the trend of the bubble departure was similar to that in macro-tubes. Whereas the following flow pattern evolution was apparently confined due to the size effect, which presented desirable heat transfer performance in mini-tubes. The heat transfer coefficients for different flow patterns along the mini-tube were obtained in terms of bubbly, slug, annular flow and the flow regimes of flow reversal and post dryout. It was found that the dominant heat transfer mechanism was the liquid film evaporation which offered desirable heat transfer capability. The heat transfer performance would be deteriorated in the post dryout regime, while flow reversal could somewhat enhance the heat transfer upstream of the nucleation site. Boiling curves around the specified nucleation site were recorded and analyzed based on the recorded flow patterns.  相似文献   

4.
Accurate predictions of two-phase pressure drop in small to micro-diameter passages are necessary for the design of compact and ultra-compact heat exchangers, which find wide application in process and refrigeration industries and in the cooling of electronics. A semimechanistic model of boiling two-phase pressure drop in the confined bubble regime is formulated, following the three-zone approach for heat transfer. The total pressure drop is calculated by time-averaging the pressure drops for single-phase liquid, elongated bubble with a thin liquid film, and single-phase vapor. The model results were compared with experimental data collected for a wide range of tube diameters (4.26, 2.88, 2.02, 1.1, and 0.52 mm) for R134a at pressures of 6–12 bar. In this model's present form, its predictions are close to those of the homogeneous flow model but it provides a platform for further development.  相似文献   

5.
微尺度通道内流动沸腾研究综述   总被引:1,自引:0,他引:1  
阐述了微尺度通道内传热问题出现的工程背景——高密度微电子器件的冷却。对当前国内外微尺度通道内流动沸腾换热特性的研究现状进行了归纳。突出分析了工质种类、微尺度通道的几何参数和工质的工况参数等对微尺度通道内流动沸腾换热特性的影响。同时分析了微尺度通道内流动沸腾换热的强化机理、流动阻力特性、压降关联式和沸腾换热关联式的理论和实验研究。最后根据分析对今后的工作提出了一些建议。  相似文献   

6.
Movable Electrical Conducting Probe (MECP), a kind of simple and reliable measuring transducer, used for predicting full-flow-path flow pattern in a boiling vapor/liquid two-phase flow is introduced in this paper. When the test pipe is set at different inclination angles, several kinds of flow patterns, such as bubble, slug, churn, intermittent, and annular flows, may be observed in accordance with the locations of MECP. By means of flow pattern analysis, flow field numerical calculations have been carried out, and heat transfer coefficient correlations along full-flow-path derived. The results show that heat transfer performance of boiling two-phase flow could be significantly augmented as expected in some flow pattern zones.The results of the investigation, measuring techniques and conclusions contained in this paper would be a useful reference in foundational research for prediction of flow pattern and heat transfer behavior in boiling two-phase flow, as well as for turbine vane liquid-cooling design.  相似文献   

7.
8.
In this study, the influence of different channel geometries on heat transfer, flow regime and instability of a two-phase thermosyphon loop, is investigated. Instabilities in flow regime and heat transfer, at low and high heat fluxes, are observed. Bubbly flow with nucleate boiling heat transfer mechanism, confined bubbly/slug flow with backflow for small channel height (H) and finally slug/churn flow at high heat fluxes are observed. This study shows that flow and thermal instability increases as channel height (H) decreases and also heat transfer coefficient increases with increasing channel height and heat flux. Bubbly flow characterizes the flow regime at high heat transfer coefficients while confined bubbles, backflow and intermittent boiling are more significant for low channel heights with lower heat transfer coefficient and critical heat flux.  相似文献   

9.
This article is the second in a three-part study. This second part focuses on flow boiling heat transfer of refrigerant R245fa in a silicon multi-microchannel heat sink and their comparison with the results presented in part I for refrigerant R236fa. This heat sink was the same as utilized in part I. The test conditions covered base heat fluxes from 3.6 to 190 W/cm2, mass velocities from 281 to 1501 kg/m2 s and the exit vapour qualities from 0% to 78%. The effect of saturation pressure on heat transfer was tested from 141 to 273 kPa for R245fa and the effect of sub-cooling from 0 to 19 K. The R245fa database includes 693 local heat transfer coefficient measurements, for which four different heat transfer trends were identified, although in most cases the heat transfer coefficient increased with heat flux, was almost independent of vapour quality and increased with mass velocity. The entire database, including both R245fa and R236fa measurements, was compared with four prediction methods for flow boiling heat transfer in microchannels. The three-zone model of Thome et al. (J.R. Thome, V. Dupont, A.M. Jacobi, Heat transfer model for evaporation in microchannels. Part I: presentation of the model, International J. Heat Mass Transfer 47 (2004) 3375–3385) was found to give the best predictions, capturing 90% of the data within ±30% in the slug and annular flow regimes (x > 5%).  相似文献   

10.
The development of a mechanistic procedure to estimate the convection heat transfer in horizontal gas-liquid intermittent—or slug—flow is presented. In broad terms, the mean convective heat transfer coefficient is calculated following an averaging procedure based on the unit cell model of the slug flow pattern. The flow parameters (i.e., unit cell frequency, liquid slug and elongated bubble length and velocity, and liquid hold-up) were obtained from empirical data for air/water flows in a 15 m-long, 25.4 mm ID copper pipe and for natural gas (mostly methane and ethane) and oil or water flows in an actual size, 200 m-long, 150 mm ID steel pipe. A time-averaging procedure based on the unit cell parameters was then used to calculate the mean convective heat transfer coefficient. The slug flow parameters taken on the small scale air/water loop and the actual size pipeline were used for comparisons. Heat transfer data from the small scale air/water loop were used to validate the results calculated using the averaging procedure. Finally, the approach herein proposed also showed good agreement with previously published data and well-known correlations.  相似文献   

11.
Heat transfer and flow pattern of flow boiling in vertical tube are investigated numerically based on the phase-change Lattice Boltzmann method (LBM) which includes an improved pseudo-potential LB model and a thermal LB model. Two-dimensional numerical simulations are carried out under constant heat flux conditions for the first time. The processes of growth, slippage, detachment and coalescence of the bubbles are captured to verify the correctness of the model. The effects of gravity, contact angle and wall superheat on bubble departure diameter and nucleation waiting time are illustrated. The multiple flow patterns, single-phase flow, bubble flow, slug flow and DNB have been illustrated with the behaviors of bubble nucleation, growth, departure, and coalescence. Some basic features of flow boiling have been clearly observed in the simulation. The influences of several factors such as heat flux, Reynolds number, the width of flow channel, and the width of nucleation point on flow boiling especially on the point of DNB are investigated. The numerical results show that the DNB could be avoided by reducing the heating density, increasing the Reynolds number, increasing the width of the tube and reducing the heating concentration.  相似文献   

12.
Experiments of flow boiling heat transfer were conducted in four horizontal flattened smooth copper tubes of two different heights of 2 and 3 mm. The equivalent diameters of the flattened tubes are 8.6, 7.17, 6.25, and 5.3 mm. The working fluids were R22 and R410A. The test conditions were: mass velocities from 150 to 500 kg/m2 s, heat fluxes from 6 to 40 kW/m2 and saturation temperature of 5 °C. The experimental heat transfer results are presented and the effects of mass flux, heat flux, and tube diameter on heat transfer are analyzed. Furthermore, the flow pattern based flow boiling heat transfer model of Wojtan et al. [L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part I – A new diabatic two-phase flow pattern map, Int. J. Heat Mass Transfer 48 (2005) 2955–2969; L. Wojtan, T. Ursenbacker, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part II – Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes, Int. J. Heat Mass Transfer 48 (2005) 2970–2985], using the equivalent diameters, were compared to the experimental data. The model predicts 71% of the entire database of R22 and R410A ±30% overall. The model predicts well the flattened tube heat transfer coefficients for R22 while it does not predicts well those for R410A. Based on several physical considerations, a modified flow boiling heat transfer model was proposed for the flattened tubes on the basis of the Wojtan et al. model and it predicts the flattened tube heat transfer database of R22 and R410A by 85.8% within ±30%. The modified model is applied to the reduced pressures up to 0.19.  相似文献   

13.
Local heat transfer coefficients and pressure drops during boiling of the dielectric liquid fluorinert FC-77 in parallel microchannels were experimentally investigated in recent work by the authors. Detailed visualizations of the corresponding two-phase flow regimes were performed as a function of a wide range of operational and geometric parameters. A new transition criterion was developed for the delineation of a regime where microscale effects become important to the boiling process and a conventional, macroscale treatment becomes inadequate. A comprehensive flow regime map was developed for a wide range of channel dimensions and experimental conditions, and consisted of four distinct regions – bubbly, slug, confined annular, and alternating churn/annular/wispy-annular flow regimes. In the present work, physics-based analyses of local heat transfer in each of the four regimes of the comprehensive map are formulated. Flow regime-based models for prediction of heat transfer coefficient in slug flow and annular/wispy-annular flow are developed and compared to the experimental data. Also, a regime-based prediction of pressure drop in microchannels is presented by computing the pressure drop during each flow regime that occurs along the microchannel length. The results of this study reveal the promise of flow regime-based modeling efforts for predicting heat transfer and pressure drop in microchannel boiling.  相似文献   

14.
Experiments are conducted here to investigate how the channel size affects the saturated flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured heat transfer data indicate that the saturated flow boiling heat transfer coefficient increases with a decrease in the gap of the duct. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are milder. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases slightly at increasing R-134a mass flux. Moreover, the bubble departure frequency increases at reducing duct size mainly due to the rising shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Correlation for the present saturated flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

15.
A four-zone flow boiling model is presented to describe saturated flow boiling heat transfer mechanisms in a microchannel of rectangular cross-section. The boiling process in the microchannel is assumed to be a cyclic passage of four zones: (i) liquid-slug zone, (ii) elongated bubble zone, (iii) partially-dryout zone, and (iv) fully-dryout zone. The existence of the partially-dryout zone in this model is proposed to take into consideration of corner effects on boiling heat transfer in the microchannel. To verify this new model, an experimental study was carried out to investigate flow boiling heat transfer of water in a microchannel having a rectangular cross-section with a hydraulic diameter of 137 μm (202 μm in width and 104 μm in depth) with a length of 30 mm under three-side heating condition. The data for bubble nucleation frequency was correlated in terms of the Boiling number, which was used to determine the heat transfer coefficient. It is found that the present four-zone flow boiling model successfully predicts trends of boiling heat transfer data in a microchannel with a rectangular cross-section, having a sharp peak at low vapor quality depending on the mass flow rate. The predictions of flow boiling heat transfer coefficient in the microchannel are found in good agreement with experimental data with a MAE of 13.9%.  相似文献   

16.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

17.
Experiments are conducted here to investigate how the channel size affects the R-407C saturated flow boiling heat transfer and associated bubble characteristics in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured data indicate that the saturated flow boiling heat transfer coefficient increases with a decrease in the duct gap. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are milder. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases noticeably at increasing R-407C mass flux. Moreover, the bubble departure frequency increases at reducing duct size and at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Meanwhile comparison of the present heat transfer data for R-407C with R-134a in the same duct and with some existing correlations is conducted. Furthermore, correlation for the present R-407C saturated flow boiling heat transfer data is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

18.
Using the VOF multiphase flow model, numerical simulations are conducted to investigate the nucleate boiling of water in micro-channels. The Marangoni heat transfer through the bubble surface is analyzed, and is compared with the incipient heat flux at the onset of nucleate boiling in micro-channels. The bubble growth in the channel is divided into two stages. At the initial stage, bubble growth is controlled by surface tension, while at the second stage the incipient heat transfer dominated the boiling process. In the results, the full process of bubble generating, growing, departing, combining, and shrinking in the channel is displayed. The simulated results with similar condition are agreed well with some experimental results in references. The method and discussion in the paper are helpful to the investigation of the mechanism of micro-scale two-phase flow and heat transfer.  相似文献   

19.
Wall boiling and bubble population balance equations combined with a two-fluid model are employed to predict boiling two-phase flow in an inclined channel with a downward-facing heated upper wall. In order to observe the boiling behavior on the inclined, downward-facing heated wall, a visualization experiment was carried out with a 100 mm × 100 mm of the cross section, 1.2-m-long rectangular channel, inclined by 10° from the horizontal plane. The size of the heated wall was 50 mm by 750 mm and the heat flux was provided by Joule heating using DC electrical current. The temperatures of the heater surface were measured and used in calculating heat transfer coefficients. The wall superheat for 100 kW/m2 heat flux and 200 kg/m2s mass flux ranged between 9.3°C and 15.1°C. High-speed video images showed that bubbles were sliding, continuing to grow, and combining with small bubbles growing at their nucleation sites in the downstream. Then large bubbles coalesced together when the bubbles grew too large to have a space between them. Finally, an elongated slug bubble formed and it continued to slide along the heated wall. For these circumstances of wall boiling and two-phase flow in the inclined channel, the existing wall boiling model encompassing bubble growth and sliding was improved by considering the influence of large bubbles near the heated wall and liquid film evaporation under the large slug bubbles. With this improved model, the predicted wall superheat agreed well with the experimental data, while the RPI model largely overpredicted the wall superheat.  相似文献   

20.
Xin Fu  Peng Zhang  Caojin Huang  Ruzhu Wang 《传热工程》2013,34(11-12):1009-1018
High-speed photography was applied to visualize the flow pattern evolution of flow boiling of liquid nitrogen in an upward quartz microtube coated with a layer of transparent indium tin oxide film as the heater. The inner diameter of the employed tube was about 1.33 mm. The characteristic of nucleation site activation, which was the beginning of the flow pattern evolution, was studied visually. In the case of low heat flux and small mass flux, only a single nucleation site was activated. The departed bubbles grew to the size of the inner diameter of the tube soon and the transition from the bubbly flow to slug and annular flow occurred earlier compared to the conventional normal-sized tubes. In the case of high mass flux and high subcooling, multiple nucleation sites were activated. The interaction between adjacent nucleation sites was considered. Slug and annular flow were found to suppress the downstream nucleation site. Bubble coalescence was one of the key factors for the flow pattern evolution, and it was found that the bubble coalescence would bring about great disturbance to the adjacent nucleation site. The characteristics of bubble condensation in the subcooled liquid nitrogen were also demonstrated. Flow pattern evolution beyond the boiling crisis was also investigated. Post-dryout regimes such as inverted bubbly, inverted slug, and inverted annular flow were observed in the microtube. Flow reversal and liquid entrainment, which were relevant to flow instability in the flow pattern evolution, were demonstrated clearly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号