首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《Planning》2019,(12):73-74
趋磁细菌是一类可以沿磁场方向进行运动的微生物统称,在细胞内合成由生物膜包被、链状排列、纳米级、单磁畴的磁铁矿(Fe_3O_4)或胶黄铁矿(Fe_3S_4)的磁小体颗粒。趋磁细菌在自然界分布广泛且多样性丰富,不仅在水环境和沉积环境的铁、硫、碳、氮、磷等元素生物地球化学循环中发挥重要作用,而且在污染治理、疾病诊断和治疗等方面有较好的应用。趋磁细菌磁小体由生物膜包被并在细胞调控下合成,是一类新型的生物源磁性纳米材料。相比常规化学合成的磁性纳米颗粒,磁小体具有大小均一、生物相容性高、兼具化学修饰和基因工程修饰功能等特点,在磁性分离、固定化酶、食品检测、环境监测、医学诊断、磁共振成像、磁热疗和靶向治疗等方面具有广阔的应用前景。在介绍趋磁细菌多样性研究的基础上,综述了趋磁细菌和磁小体的制备、修饰及其应用的最新进展,并对未来的研究进行了展望。  相似文献   

2.
《Planning》2014,(12)
为了探究表面聚乙二醇(PEG)修饰对抑制疏水性纳米颗粒在水中的聚集行为影响,应用粗粒度分子动力学计算方法,对PEG修饰的疏水性纳米颗粒的水相聚集行为进行了模拟研究。分别建立刚性颗粒和表面疏水链改造的颗粒两种纳米颗粒模型,重点探讨了不同链长PEG修饰对抑制颗粒聚集的影响。研究发现,PEG修饰可以有效抑制疏水性纳米颗粒在水相中的聚集行为,而且随着PEG修饰长度的增加,抑制聚集作用明显增强。通过对颗粒聚集前、后体系的分子密度分布改变、颗粒的均方位移以及能量变化等参数的分析,进一步阐述了PEG修饰抑制疏水性纳米颗粒在水相中的聚集过程,并对其微观机制进行初步探究。模拟结果表明,通过对纳米颗粒表面进行PEG修饰,可以调控颗粒在水相环境中聚集行为。  相似文献   

3.
《Planning》2015,(24)
为了实现对三磷酸腺苷(ATP)无标记、高灵敏地检测,构建了基于二硫化钼的交流阻抗适体传感器。利用二硫化钼自身的还原性成功合成了金纳米颗粒功能化二硫化钼(AuNPs@MoS2)纳米复合材料,并通过Au-S键将ATP核酸适体组装到AuNPs@MoS2修饰电极表面。当核酸适体与ATP结合后,其构型发生变化,将会阻碍电化学信号分子K3Fe(CN)6和K4Fe(CN)6与修饰电极间的电子传递,使该适体传感器的电阻变大。在最优条件下,该传感器检测ATP的线性范围为10nmol/L~1mmol/L,检出限为1nmol/L,并能很好地区分ATP与CTP、GTP和UTP,表明该传感器具有较高的检测灵敏度和良好的特异性。该传感器的成功构建,为其他生物分子的检测提供了新的思路。  相似文献   

4.
《Planning》2014,(12)
将人B淋巴瘤细胞(Ramos)的核酸适体TE02和钴纳米粒子(CoNPs)标记的DNA按1∶10的比例组装到金磁核壳结构Au@Fe3O4上,得到一种新型磁性生物条形码纳米探针(TE02/CoNPs/Au@Fe3O4)。通过适体TE02与96孔板上捕获探针的部分杂交,将所构建的磁性纳米探针固定到96孔板上。进一步利用Ramos细胞表面蛋白与适体TE02的特异性识别,将TE02/CoNPs/Au@Fe3O4纳米探针结合到Ramos细胞表面。磁性分离后,加入连接DNA,通过链取代反应将Ramos细胞表面的TE02/CoNPs/Au@Fe3O4纳米探针解离下来,进而作为信号放大的中转站,通过稀硝酸溶解,释放大量二价钴离子(Co2+)。基于Co2+催化鲁米诺-过氧化氢化学发光反应体系,采用流动注射进样技术,实现对Ramos细胞的高灵敏度、高选择性分析检测,线性范围为10010 000个Ramos细胞,检测限可达86个Ramos细胞,并成功应用于血清样品中Ramos细胞的分析测定。  相似文献   

5.
《Planning》2017,(9):82-88
研究微生物谷氨酰胺转氨酶(mTG)催化细胞色素c(Cytc)的PEG定点修饰的可行性,并优化修饰条件,研究PEG修饰对Cytc性质的影响。将单甲氧基聚乙二醇氨(mPEG-NH_2)与N-苄氧羰基-谷氨酰胺-甘氨酸(CBZ-QG)共价结合制备含谷氨酰胺残基的甲氧基聚乙二醇衍生物(N-苄氧羰基-谷氨酰胺-甘氨酰-单甲氧基聚乙二醇,CBZ-QG-mPEG);mTG分别催化mPEG-NH_2、CBZQG-mPEG(mTG)修饰Cytc,研究酶法定点修饰Cytc残基的可行性;改变酶的用量、温度、反应时间和p H等反应条件优化谷胺酰胺转氨酶催化修饰Cytc的条件。研究结果表明:(1)mPEG-NH_2不能作为mTG的底物修饰Cytc,甲氧基聚乙二醇氨(mPEG-NH_2)分子上引入谷氨酰胺残基后,在mTG的催化作用下了实现Cytc的PEG修饰,而且基于mTG的底物特异性实现了PEG定点修饰Cytc的赖氨酸(Lys)残基;(2)37℃温度下,p H 8.0的溶液中,1mg/ml的mTG催化修饰反应2h是最佳修饰反应条件;(3)化学法PEG修饰Cytc产物复杂,是多种多点修饰产物的混合物,酶法催化PEG修饰Cytc只产生单一产物;(4)与天然Cytc相比,修饰后Cytc的活力、稳定性都有所提高。提出的谷胺酰胺转胺酶催化修饰法解决了蛋白质Lys残基难以定点修饰的难题,拓展了mTG在蛋白质修饰方面的应用。  相似文献   

6.
《Planning》2019,(3):278-283
基于Zn(II)-二甲基吡啶胺(Zn-DPA)合成了含十六烷基醇疏水性尾部的单/双核金属阳离子脂质6a-6b.通过凝胶电泳、溴乙锭置换和粒径电位实验考察了它们与质粒DNA的相互作用.结果表明,两个金属脂质均可将DNA包裹缩合成具有适当粒径大小和zeta电位的纳米颗粒.并且,双核金属脂质6b具有比单核脂质6a更强的DNA结合能力.MTT细胞毒性实验显示金属脂质体/DNA复合物具有较低细胞毒性(细胞存活率大于80%).体外基因转染研究表明,单核金属脂质6a的转染效率优于双核金属脂质6b.  相似文献   

7.
《Planning》2018,(10)
针对荧光有机小分子探针存在的细胞膜穿透性差、吸收率低以及细胞定位能力差等问题,本论文将具有化学稳定性好和荧光淬灭效率高的碳纳米颗粒(CNPs)引入到传感体系设计中,构建一种以CNPs为荧光淬灭剂和纳米载体,荧光素(FAM)为荧光标记物模型,多肽(PFP)为连接和识别基团的CNPs/PEP-FAM荧光纳米交联传感平台。在该体系中,CNPs和多肽之间通过π-π堆积作用,不需要复杂繁琐的修饰过程,操作简单,通用性好;利用荧光分析技术可以实现对caspase-3活性的高灵敏检测。  相似文献   

8.
为解决阿特拉津(ATZ)造成的水体污染问题,以三聚氰胺为前驱体,通过热聚合的方法成功制备了石墨相氮化碳(g-C3N4),并通过X射线衍射光谱(XRD)及扫描电子显微镜(SEM)对其结构及形貌进行了表征;同时探究了在可见光条件下g-C3N4与过二硫酸盐(PDS)耦合体系降解ATZ的效能。动力学研究证实,在可见光下g-C3N4与PDS具有明显的协同效应,其对ATZ的降解明显优于g-C3N4/Vis、PDS/Vis及g-C3N4/PMS(过一硫酸盐)/Vis体系。在优化实验参数的过程中发现,适度增加PDS的浓度和g-C3N4的用量、降低溶液的pH能有效促进ATZ的降解;但Cl-、CO32-/HCO3-、NO3  相似文献   

9.
《Planning》2014,(19)
以丙烯酸和聚乙二醇为原料,在对甲苯磺酸的催化下、氢醌为阻聚剂,利用二元醇与羧酸的酯化反应制得纯度较高的交联剂(聚乙二醇二丙烯酸酯),产率为74.37%。之后利用自由基引发的链式聚合反应制得丙烯酸-聚乙二醇二丙烯酸酯共聚物(即超强吸水剂)。经吸水试验测得所合成超强吸水剂对自来水的吸水倍率为85.19。  相似文献   

10.
纳米CaCO3增韧聚氯乙烯复合材料的界面作用和拉伸性能   总被引:1,自引:0,他引:1  
用熔融共混方法制备PVC/nano-CaCO3复合材料,研究了纳米CaCO3粒径、表面处理剂及含量对复合材料拉伸性能和界面作用的影响,用界面作用参数B和界面解键角θ表征了CaCO3纳米颗粒和PVC之间的界面作用大小.研究表明,相对于异丙基三(硬酯酰基)钛酸酯以及未改性的纳米COCO3颗粒,异丙基三(二辛基焦磷酰基)钛酸酯处理使得PVC/nano-COCO3复合材料有更高的拉伸强度和界面作用.PVC/nano-CaCO3复合材料的拉伸强度和界面作用随着表面处理剂含量的增加以及纳米碳酸钙粒径的减小而增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号