首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A zeolite‐water adsorption module, which has been originally constructed for an adsorption heat pump, has been experimentally investigated as an adsorptive thermal energy storage unit. The adsorber/desorber heat exchanger contains 13.2 kg of zeolite 13X and is connected to an evaporator/condenser heat exchanger via a butterfly valve. The flow rate of the heat transfer fluid in the adsorber/desorber unit has been changed between 0.5 and 2.0 l min?1, the inlet temperature to the evaporator between 10 and 40°C. It turned out that the higher the flow rate inside the adsorber/desorber unit the faster and more effective is the discharge of heat. However, at lower flow rates higher discharge temperatures are obtained. Storage capacities of 2.7 and 3.1 kWh have been measured at the evaporator inlet temperatures of 10 and 40°C, respectively, corresponding to thermal energy storage densities of 80 and 92 kWh m?3 based on the volume of the adsorber unit. The measured maximum power density increases from 144 to 165 kWh m?3 as the flow rate in the adsorber increases from 0.5 to 2 l min?1. An internal insulation in form of a radiation shield around the adsorber heat exchanger is recommended to reduce the thermal losses of the adsorptive storage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In the present study, the theoretical and experimental results of the second law analysis on the heat transfer and flow of a horizontal concentric tube heat exchanger are presented. The experiments setup are designed and constructed for the measured data. Hot water and cold water are used as working fluids. The test runs are done at the hot and cold water mass flow rates ranging between 0.02 and 0.20 kg/s and between 0.02 and 0.20 kg/s, respectively. The inlet hot water and inlet cold water temperatures are between 40 and 50 °C, and between 15 and 20 °C, respectively. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer characteristics, entropy generation, and exergy loss are discussed. The mathematical model based on the conservation equations of energy is developed and solved by the central finite difference method to obtain temperature distribution, entropy generation, and exergy loss. The predicted results obtained from the model are validated by comparing with the present measured data. There is reasonable agreement from the comparison between predicted results and those from the measured data.  相似文献   

3.
Heat transfer between two immiscible liquid phases in turbulent flow is of great interest in improving the residence time, compactness, and energy cost of cooling and heating processes. The high-efficiency vortex (HEV) device used here as a direct-contact heat exchanger (DCHE) is a generic multifunctional exchanger/reactor in which wall tabs generate longitudinal vortices responsible for convective radial transfer that enhance macro-mixing, phase dispersion and fast temperature homogenization in the flow.The experiments reported here concern a continuous flow of water in which an immiscible mineral oil is injected. The inlet water temperature ranges from 11 to 13 °C, and the inlet oil temperature from 40 to 48 °C; the flow Reynolds number varies between 7500 and 15 000. An algebraic one-dimensional thermal model accounting for the axial evolution of the phase temperatures coupled with drop breakup is developed and validated by the experimental thermal results in the DCHE. This model requires knowledge of the turbulent field in single-phase conditions; it can be adapted to other flow geometries and can be used as a sizing tool for engineering design.Despite the phase separation at the outlet, the DCHE is more efficient than a double-jacketed heat exchanger in terms of global Nusselt number. In addition, the HEV heat exchanger is energetically less costly than the other DCHE for the same heat-transfer capacity.  相似文献   

4.
The energy analysis of ground source heat pump systems is based on the instantaneous fluid temperature at the ground heat exchanger outlet. This temperature defines the ground source heat pump coefficient of performance (COP) and hence the electricity consumption required in order to fulfill the energy demands of the building. The aim of this work is to present a model able to predict the fluid temperature at the ground heat exchanger outlet, taking into account the heat transfer phenomena in the soil and the temporal variation of the thermal load of the ground heat exchanger. The model developed was verified using experimental data, expanding over a three years period, of a vertical ground heat exchanger. It is proved that the model is able to satisfactorily predict the recorded temperature values throughout the verification period. The differences between measured and estimated outlet water temperatures impose a deviation between the estimated and the actually recorded electricity consumption of less than 4%.  相似文献   

5.
建立了可进行壳管式换热器动态特性试验研究系统,通过试验研究的方法对水-油为换热工质的连续螺旋折流板管壳式换热器动态特性进行了试验研究,进口流量扰动为等百分比流量特性,研究了4种流量扰动方式下水和油出口温度的动态响应。同时研究了在一定Re数下,不同的流体扰动量对换热器进出口温升的影响,得到了换热器进出口温升与流体扰动量之间的关联式。实验表明,液液换热系统温度的动态响应时间比较长,研究发现在正负的流量扰动下,换热器进出口温度变化呈现线性变化,进出口温升在正负流量扰动下其变化曲线具有对称特征。分别建立了有限差分数值预测模型及人工神经网络模型对换热器油侧的出口温度进行了动态预测,预测结果与试验值符合良好,人工神经网络的预测结果要好于数值模拟预测,其偏差绝对值在1.3%以内,表明人工神经网络在进行复杂的系统辨识时具有一定的参考及应用价值。  相似文献   

6.
为了提高折流板换热器的换热性能,改变了折流板换热器的折弯夹角和折流板间距,利用ANSYS Fluent对换热器壳程流体流动与换热过程进行模拟,分析了不同折流板折弯夹角α (110°,135°,170°和180°)、折流板间距(250,300和350 mm)和雷诺数(10 000,20 000和50 000)对换热器壳程压力、速度和温度的影响。结果表明:增大雷诺数对改善流动死区有很大的作用,雷诺数为50 000时的流动死区相对于雷诺数为10 000时面积减小较大;随着夹角α的减小,折流板背流侧的流动死区面积逐渐减小、换热器的表面传热系数和进出口压降力越大,夹角α为110°时出口温度最小、进出口压降最大,夹角α为135°时PEC最大且换热器综合性能最优;折流板间距增大,压力变化梯度减小,压差变化幅度减小,壳程出口温度变化不成正比关系,间距为300 mm时出口温度最低。  相似文献   

7.
This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased.  相似文献   

8.
Parameters that affect the temperature at which service hot water (SHW) is offered by an immersed tube heat exchanger (HX), inside a flat plate Integrated Collector Storage Solar Water Heater (ICSSWH), are examined numerically, by means of Computational Fluid Dynamics (CFD) analysis. The storage water is not refreshed and serves for heat accumulation. Service hot water is drawn off indirectly, through an immersed serpentine heat exchanger. For the intensification of the heat transfer process, the storage water is agitated by recirculation through a pump, which goes on only when service water flows inside the heat exchanger. Three main factors, which influence the performance, are optimized: The position of the HX relative to tank walls, the HX length and the tube diameter. All three factors are explored so that to maximize the service water outlet temperature. The settling time of the optimum configuration is also computed. Various 3-D CFD models were developed using the FLUENT package. The heat transfer rate between the two circuits of the optimum configuration is maintained at high levels, leading to service water outlet temperatures by 1–7 °C lower than tank water temperatures, for the examined SHW flow rates. The settling time is retained at sufficient law values, such as 20 s. The optimal position was found to lay the HX in contact with the front and back walls of the tank, with an optimum inner tube diameter of 16 mm, while an acceptable HX length was found to be about 21.5 m.  相似文献   

9.
《Applied Thermal Engineering》2007,27(5-6):988-993
A critical cycle heat pump with HFC125 was studied experimentally. The experimental result indicates that the heat pump with HFC125 can use the general components of the conventional heat pump well. Hot water with wide-range temperature can be conveniently got by the critical heat pump system through water flow control. The COPh of the critical cycle drops a little when the temperature of outlet water rises from 60 °C to 75 °C. And adding heat recovering exchanger cannot improve the performance of the cycle, but can reduce the working pressure of the cycle. Comparing with the CO2 trans-critical heat pump, HFC125 critical heat pump has a better performance of refrigeration, lower working pressure, which is especially suitable for dual-function of supplying hot water and refrigeration in the civil and industrial buildings.  相似文献   

10.
《Exergy》2002,2(2):113-118
In this study, an exergoeconomic analysis of condenser type parallel flow heat exchangers is presented. Exergy losses of the heat exchanger and investment and operation expenses related to this are determined with functions of steam mass flow rate and water exit temperature at constant values of thermal power of the heat exchanger at 75240 W, cold water mass flow rate and temperature. The inlet temperature of water is 18 °C and exit temperatures of water are varied from 25 °C to 36 °C. The values of temperature and pressure of saturated steam in the condenser are given to be Tcon=47 ° C and Pcon=10.53 kPa. Constant environment conditions are assumed. Annual operation hour and unit price of electrical energy are taken into account for determination of the annual operation expenses. Investment expenses are obtained according to the variation of heat capacity rate and logarithmic mean temperature difference and also heat exchanger dimension determined for each situation. The present analysis is hoped to be useful in determining the effective parameters for the most appropriate exergy losses together with operating conditions and in finding the optimum working points for the condenser type heat exchangers.  相似文献   

11.
M. Fatouh  E. Elgendy   《Energy》2011,36(5):2788-2795
The present work aims at evaluating the performance characteristics of a vapor compression heat pump (VCHP) for simultaneous space cooling (summer air conditioning) and hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of evaporator water inlet temperature (14:26 °C) and condenser water inlet temperature (22:34 °C). R134a was used as a primary working fluid whereas water was adopted as a secondary heat transfer fluid at both heat source (evaporator) and heat sink (condenser) of the heat pump. Performance characteristics of the considered heat pump were characterized by outlet water temperatures, water side capacities and coefficient of performance (COP) for various operating modes namely: cooling, heating and simultaneous cooling and heating. Results showed that COP increases with the evaporator water inlet temperature while decreases as the condenser water inlet temperature increases. However, the evaporator water inlet temperature has more effect on the performance characteristics of the heat pump than that of condenser water inlet temperature. Actual COP of cooling mode between 1.9 to 3.1 and that of heating mode from 2.9 to 3.3 were obtained. Actual simultaneous COP between 3.7 and 4.9 was achieved.  相似文献   

12.
The looming threat of global warming has elicited efforts to develop reliable sustainable energy resources. Hydrogen as a clean fuel is deemed a potential solution to the problem of storage of power from renewable energy technologies. Among current thermochemical hydrogen generation methods, the thermochemical copper-chlorine (Cu–Cl) cycle is of high interest owing to lower temperature requirements. Present study investigates a novel heat exchanger comprising a thermoelectric generator (TEG) to recover heat from high temperature molten CuCl exiting the thermolysis reactor. Employing casting/extrusion method, the performance of the proposed heat exchanger is numerically examined using COMSOL Multiphysics. Results indicate that maximum generated power could exceed 40 W at the matching current of 4.5 A. Maximum energy conversion efficiency yields to 7.1%. Results demonstrate that TEG performance boosts with increasing the inlet Re number, particularly at the hot end. For the molten CuCl chamber, findings denote that there is a 36% discrepancy between highest and lowest Re numbers. Similarly, the highest efficiency value pertains to the case with the highest inlet velocity. Moreover, the highest temperature difference between inlet and outlet of the cooling water is about 28 °C and 10 °C for the lowest and highest inlet Re numbers, respectively. Average deviation from anticipated friction factor and Nusselt number are 0.31% and 12.62%, respectively.  相似文献   

13.
The temperature control of outlet air by changing the water flow rate in a single-pass waterto-air cross-flow heat exchanger is investigated. The conservation laws are applied to finite control volumes and an implicit formulation is used for transient numerical solutions. Conjugate forced convection heat transfer from the tube is solved to calculate the temperatures of the air and water coming out of the heat exchanger. In the simulations the outlet air temperature is controlled by changing the water flow rate entering the heat exchanger using a proportional-integral (PI) controller. The range of controllability of the heat exchanger was studied first. Then disturbances in the form of step changes in the inlet air temperature, the air flow rate, and the set point temperature were separately introduced. The effects of the limiting-condition constraints and different control parameters on controlling the outlet air temperature are presented. The results show that the control behavior can be simulated numerically and that this control methodology is effective within limits.  相似文献   

14.
To increase the driving range of electric vehicles in cold climate, air conditioning heat pump (ACHP) system is supposed to be the most effective solution. Working near 0°C with high humidity, the microchannel outdoor heat exchanger (OHX) in system would experience badly frosting process, like traditional residential heat pump system. It would lead to a significant reduction of system performance without defrosting in time. In this article, experimental investigation has been implemented on the frosting process of ACHP system of electric vehicles which is with a microchannel OHX. The phenomenon of frosting distribution was observed, the frosted part on surface shows uneven with various flows paths. The typical frosting characteristics of an outdoor microchannel heat exchanger were also obtained. In a self-designed three-heat exchanger ACHP system, the inlet and outlet refrigerant temperature of OHX as well as the outlet air temperature of system decrease with increasing frosting coverage rate. The frosting phenomenon was analyzed with variation of ambient temperature and humidity. System influence by frosting was also studied with under different ambient conditions. When OHX begins to frost, the heating capacity reduction of system under different ambient conditions were both increased but the differences in the coefficient of performance (COP) variations under different ambient conditions were small as frosting progressed.  相似文献   

15.
Steady-state performance data have been obtained on a domestic sized engine-driven water-to-water heat pump. The optimum working fluid suction superheat for the system was found to be 12°C. Over a range of heat sink conditions, increasing the engine speed linearly increased the total heat prouduced by the unit. Similarly, over a range of heat source conditions, increasing the engine speed linearly increased the working fluid evaporation rate. To produce water at 80°C, the heat pump was designed to operate with a heat sink temperature of 70°C, but its efficiency was improved by operating with the heat sink at 55°C. With a heat sink temperature of 55°C the primary energy ratio of the unit was observed to vary from 0–85 to 1–16, over a range of heat source temperatures. Algorithms developed from the steady-state experiments were incorporated as control function subroutines in a microcomputer program. Using this program, the microcomputer was employed to control the heat pump outlet water temperature and the working fluid suction superheat. The control system was tested in a series of dynamic experiments and was found to operate effectively and achieved its control requirements. In certain tests, the transient time period was extended because the electrically-controlled expansion valve was too large for the system and created instability in the suction superheat.  相似文献   

16.
E. Elgendy  J. Schmidt  A. Khalil  M. Fatouh 《Energy》2011,36(5):2883-2889
The present work aimed at evaluating the experimental performance of a gas engine heat pump for hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of ambient air temperature (10.9-25.3 °C), condenser water inlet temperature (33-49 °C) and at two engine speeds (1300 and 1750 rpm). Performance characteristics of the gas engine heat pump were characterized by water outlet temperatures, total heating capacity and primary energy ratio. The reported results revealed that hot water outlet temperature between 35 and 70 °C can be obtained over the considered range of the operating parameters. Also, total heating capacity and gas engine heat recovery decrease by 9.3 and 27.7%, respectively, while gas engine energy consumption increases by 17.5% when the condenser water inlet temperature changes from 33 to 49 °C. Total heating capacity, gas engine heat recovery and gas engine energy consumption at ambient air temperature of 25.3 °C are higher than those at ambient air temperature of 10.9 °C by about 10.9, 6.3 and 1.5% respectively. Moreover, system primary energy ratio decreases by 15.3% when the engine speed changes from 1300 to 1750 rpm.  相似文献   

17.
This paper examines experimentally the effect of jet vortex technology on enhancing the heat transfer rate within a double pipe heat exchanger by supplying the heat exchanger with water at different vortex strengths. A vortex generator with special inclined holes with different inlet angles was designed, manufactured, and integrated within the heat exchanger. In this study, four levels of Reynolds number for hot water in the annulus (Reh) were used, namely, 10,000; 14,500; 18,030; and 19,600. Similarly, four levels of Reynolds number for cold water in the inner tube (Rec) were used, namely, 12,000; 17,500; 22,500; and 29,000. As for the inlet flow angle (θ), four different levels were selected, namely, 0°, 30°, 45°, and 60°. The temperature along the heat exchanger was measured utilizing 34 thermocouples installed along the heat exchanger. It was found that increasing the inlet flow angle (θ) and/or the Reynolds number results in an increase in the local Nusselt number, the overall heat transfer coefficient, and the ratio of friction factor. It is revealed that the percentage increase in the average Nusselt number due to swirl flow compared to axial flow was 10%, 40%, and 82% for an inlet flow angle of 30°, 45°, and 60°, respectively.  相似文献   

18.
This paper deals with the cold energy release characteristics of an ice/air direct contact heat exchanger. Characteristics of the outlet temperature, humidity, and time history of heat release are examined when the initial height of the ice‐cube‐packed bed in the heat exchanger is changed. The following results were obtained in these experiments: (1) Inlet air of 30 °C is lowered to about 0 °C when passed through the heat exchanger, and the absolute humidity of the outlet air is reduced to about a quarter of that of the inlet air. (2) There is an optimum height of the ice‐cube‐packed bed to maximize the amount of cold energy release. (3) This heat exchange method can supply about twice as much cold energy as is released by an ordinary fin‐tube‐type heat exchanger even if the air velocity in the heat exchanger is reduced to about 0.38 times that of the fin‐tube‐type heat exchanger. (4) A nondimensional correlation equation for predicting the time taken for the ice‐cube‐packed bed to completely melt is derived. © 2001 Scripta Technica, Heat Trans Asian Res, 30(2): 95–113, 2001  相似文献   

19.
The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32–40 °C has been controlled, while the inlet return air temperature is kept constant at about 26 °C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40 °C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes.  相似文献   

20.
In the present study, the average tube-side and air-side heat transfer coefficients in a spirally coiled finned tube heat exchanger under dry- and wet-surface conditions are experimentally investigated. The test section is a spiral-coil heat exchanger, which consists of six layers of concentric spirally coiled tube. Each tube is fabricated by bending a 9.6-mm outside diameter straight copper tube into a spiral coil of four turns. Aluminium fins with thickness 0.6 mm and outside diameter 28.4 mm are placed helically around the tube. The chilled water and the hot air are used as working fluids. The test runs are done at the air and water mass flow rates ranging between 0.02 and 0.2 kg/s and between 0.04 and 0.25 kg/s, respectively. The inlet-air and -water temperatures are between 35 and 60 °C and between 10 and 35 °C, respectively. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. New correlations based on the data gathered during this work for predicting the tube-side and air-side heat transfer coefficients for the spirally coiled finned tube heat exchanger are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号