首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminar-flow convective heat transfer of nanofluid in a circular tube with constant wall temperature boundary condition is investigated numerically. A dispersion model is used to account for the presence of nanoparticles. Numerical predictions are in agreement with experimental results obtained in our laboratory for different particles in different sizes. Results clearly show that addition of nanoparticles to base liquid produces considerable enhancement of heat transfer. Heat transfer coefficients increase with nanoparticle concentration. Decreasing nanoparticles size at a specific concentration increases heat transfer coefficients.  相似文献   

2.
为研究稳态声流成分对换热管对流换热特性的影响,建立了行波场中单换热管外声流强化传热的数值计算模型.采用分离时间尺度的数值方法模拟了声流和非均匀温度场的耦合作用,分析了换热管局部努塞尔数和平均努塞尔数在不同激励频率(10~1500 Hz)和声压级(103~127 dB)作用下的变化规律.结果 表明:平均努塞尔数随着激励频...  相似文献   

3.
This study presents a numerical study of nanofluid condensation heat transfer inside a single horizontal smooth square tube. The numerical results are compared to previous experimental predictions, and show that the heat transfer coefficient can be improved 20% by increasing the volume fraction of Cu nanoparticles by 5% or increasing the mass flux from 80 to 110 kg/m2 s. Reducing the hydraulic diameter of the microchannel from 200 to 160 µm led to an increase in average condensation heat transfer coefficient of 10%. A new correlation estimating Nusselt number for condensation of nanofluids or pure vapor is proposed. It predicts average condensation heat transfer, with good agreement with the computed values.  相似文献   

4.
为研究空气流入高温填充床时小球直径和空气流速变化对填充床内对流换热和压力损失等的影响,利用孔隙尺度介观方法对顺序排列多孔介质小球的三维填充床进行数值计算,数值计算与实验结果吻合较好。结果表明:填充床内固相和气相间存在热的非平衡性;当小球直径从2.8增大到5.6 mm时,在最高温度上游对流换热强度减小,在最高温度下游对流换热强度增大,同时,压力损失和最大无量纲速度减小;气体流速增大时,填充床内产生湍流运动。  相似文献   

5.
In this article, turbulent convective heat transfer of Al2O3–water and TiO2–water nanofluids through an annular channel have been studied numerically. A comparison was made between single-phase and two-phase models (mixture and Eulerian) to find out which one predicts experimental data more accurately. Effects of some important parameters such as nanoparticle type, nanoparticles concentration, and Reynolds number on heat transfer rate of nanofluids have been investigated. Results reveal that the Nusselt number improves with raising the nanoparticle concentration and Reynolds number. Also it has been observed that in all nanoparticle concentrations, two-phase models give closer results to experimental data comparing to single-phase model.  相似文献   

6.
An analysis is performed to study natural convective heat transfer in a vertical rectangular duct filled with a nanofluid. One of the vertical walls of the duct is cooled by a constant temperature, while the other wall is heated by a constant temperature. The other two sides of the duct are thermally insulated. The transport equations for a Newtonian fluid are solved numerically with a finite volume method of second‐order accuracy. The influence of pertinent parameters such as Grashof number, Brinkman number, aspect ratio and solid volume fraction on the heat transfer characteristics of natural convection is studied. Results for the volumetric flow rate and skin friction for Copper and Diamond nanoparticles are also drawn. The Nusselt number for various types of nanoparticle such as silver, copper, diamond and titanium oxide are also tabulated. The results indicate that inclusion of nanoparticles into pure water improves its heat transfer performance; however, there is an optimum solid volume fraction which maximizes the heat transfer rate.  相似文献   

7.
An experimental investigation is carried out to study the heat transfer and pressure drop characteristics of multiwalled carbon nanotubes (MWCNTs)/heat transfer oil nanofluid flows inside horizontal corrugated tubes under uniform wall temperature condition. To provide the applied nanafluids, MWCNTs are dispersed in heat transfer oil with mass concentrations of 0.05, 0.1, and 0.2 wt%. The Reynolds number varies between 100 and 4,000. Three tubes with hydraulic diameters of 11.9, 13.2, and 15.5 mm are applied as the test section in the experimental setup. Tubes are corrugated four times on the cross section; that is, there are four different helices around the tube. Depths of the corrugations are chosen as 0.9, 1.1, and 1.3 mm, and pitch of corrugation is 14 mm. The acquired data confirm the increase of heat transfer rate as a result of utilizing nanofluids in comparison with the base fluid flow. However, corrugating the tubes decreases the heat transfer rate at low Reynolds numbers. The highest increase in heat transfer rate is observed for the Reynolds numbers for which the smooth tube is in the transition regime and the corrugated tube reaches the turbulent flow, that is, Reynolds number in the range of 1,000 to 3,000. Rough correlations are proposed to predict the Nusselt number and friction factor.  相似文献   

8.
ABSTRACT

In this paper, the flow and heat transfer performances inside small pores of structured packed beds of dimple particles are numerically investigated for the first time and some interesting transport phenomena are obtained. Three-dimensional Navier–Stokes equations and SST k-ω turbulence model are adopted for the simulations. The effect of dimple depth is studied in detail, and the flow and heat transfer performances in the packed beds with dimple particles and smooth particles are also compared with each other. It is found that, with the same inlet velocity, the pressure drop and heat transfer in the packed bed with dimple particles would be lower than those in the packed bed with smooth particles, while the overall heat transfer efficiency of packed bed with dimple particles is higher. Furthermore, for the packed bed of dimple particles, the effect of dimple depth is remarkable. With the same inlet velocity, both the pressure drop and heat transfer rate of the packed bed decrease as dimple depth increases, while the overall heat transfer rate is similar for the packed bed with different dimple depths.  相似文献   

9.
Forced convective experiment of supercritical water was performed in Inconel-625 tubes of 4.62 mm, 7.98 mm and 10.89 mm in diameter. The water flowed upward, covering the ranges of pressure of 23.4 MPa to 25.8 MPa, mass flux of 90 kg/m^2s to 3,281 kg/m^2s, local bulk temperature of 102-384 ℃, inner wall temperature of 167-669℃ and heat flux of up to 2.41 MW/m^2. The results exhibited severe deteriorated and enhancement heat transfer. The experimental results can be calculated by the Jackson's correlation and the Bishop's correlation mostly. But some data with strong effects of the buoyancy force and the variations of flow regimes can not be predicted properly.  相似文献   

10.
通过数值模拟研究了超临界水在半周加热内螺纹管中的流动传热过程。采用SST k-ω湍流模型求解流固耦合换热,在压力25 MPa、质量流速600 kg/(m2•s)、热流密度分别为280 kW/m2和470 kW/m2条件下研究了螺纹高度、螺距和螺纹形状等结构参数对超临界水传热的影响,比较了全周加热和半周加热条件下螺纹结构参数对传热的影响差异,揭示了螺纹结构参数变化引起的传热强化机理。结果表明:与全周加热相比,半周加热条件下螺纹结构参数增强了对加热侧换热性能的影响,削弱了对整体平均换热性能的影响,冷侧壁面温度主要受周向导热的影响,仅与热流密度有关,不同螺纹结构参数下冷侧温度分布几乎没有变化;当浮升力准则数Bo>10-5时,优化螺纹结构对改善超临界水换热性能的效果更突出,增大螺纹高度、减小螺距能够强化换热,矩形内螺纹管的换热性能优于梯形内螺纹管;旋流是内螺纹管中超临界水传热强化的主要因素,结构参数主要通过强化边界层30相似文献   

11.
12.
ABSTRACT

Steady-state laminar natural convection in a cubic enclosure with a cold vertical wall and two hot square heaters with constant temperature on the opposite wall is studied numerically. The enclosure is filled with various liquids. Three-dimensional Navier–Stokes Equations are solved by employing the SIMPLE algorithm. Computations are performed for a range of Rayleigh number from 103 to 107 while enclosure aspect ratio varies from 0.05 to 1.6. The effects of Rayleigh number, enclosure aspect ratio, and Prandtl number on heat transfer characteristics are studied in detail. The results show that the flow field is very complex and heat transfer from the two heaters is not the same. The effects of Prandtl number are negligible in the range from 5 to 140 with other parameters kept constant. This allows the use of liquids such as water for studying other dielectric liquids, provided the flow geometry and other nondimensional parameters are similar. The overall Nusselt number increases markedly with Rayleigh number. It is also affected by enclosure aspect ratio. It attains the maximum value when aspect ratio is in the range of 0.1–0.2 and decreases as enclosure aspect ratio varies from 0.2 to 1.6. Also, various settings of cooling face and arrangement of heaters are investigated, and the results show that they have considerable effects on heat transfer of both heaters.  相似文献   

13.
Nanofluids comprised of silicon dioxide (SiO2) nanoparticles suspended in a 60:40 (% by weight) ethylene glycol and water (EG/water) mixture were investigated for their heat transfer and fluid dynamic performance. First, the rheological properties of different volume percents of SiO2 nanofluids were investigated at varying temperatures. The effect of particle diameter (20 nm, 50 nm, 100 nm) on the viscosity of the fluid was investigated. Subsequent experiments were performed to investigate the convective heat transfer enhancement of nanofluids in the turbulent regime by using the viscosity values measured. The experimental system was first tested with EG/water mixture to establish agreement with the Dittus-Boelter equation for Nusselt number and with Blasius equation for friction factor. The increase in heat transfer coefficient due to nanofluids for various volume concentrations has been presented. Pressure loss was observed to increase with nanoparticle volume concentration. It was observed that an increase in particle diameter increased the heat transfer coefficient. Typical percentage increases of heat transfer coefficient and pressure loss at fixed Reynolds number are presented.  相似文献   

14.
Yu-Fei Mao  Bo-Feng Bai  Lie-Jin Guo 《传热工程》2013,34(11-12):1082-1092
In the present study, a novel model was established to investigate the enhanced heat transfer to turbulent pipe flow of supercritical pressure fluids. The governing equations for the steady turbulent compressible pipe flow were simplified into the one-dimensional nondimensionalized forms based on the boundary layer theory. A conventional mixing length turbulence model for constant-property pipe flows was modified by introducing the effect of density fluctuations into the equations of turbulent transport, and the modified turbulence model was applicable to both constant-property and variable-property pipe flows. With the suggested model, which was a combination of the nondimensional governing equations and the modified turbulence model, the numerical calculations were carried out for the turbulent convective heat transfer of water in round tubes at supercritical pressures. The results showed that the present model can provide a relatively precise prediction about the effect of pressure, mass flux, and wall heat flux on heat transfer for supercritical fluid flows and greatly reduce the calculation workload. The modified turbulence model showed a much better agreement with the experimental results than the original turbulence model.  相似文献   

15.
缸内对流换热与气体流动的计算分析   总被引:3,自引:0,他引:3  
摘要本文将内燃机燃烧室简化成轴对称的二维空间,将计算缸内流动的二维模型与边界层模型相结合,分析了缸内气体的迁移特性与对流换热.文中介绍了在内燃机工作过程中缸内气体边界层的分布与变化、边界层对对流换热的影响,给出了对流挟热系数沿燃烧室表面的分布与变化.与实测结果的比较表明,本文的模型具有较高的精度.  相似文献   

16.
Numerical simulation on unsteady flow and heat transfer of alumina–water nanofluids around a calabash-shaped body was performed in the present study. Improved models of drag force and Brownian force were introduced. As the reaction time of the particle perturbation is short, fluctuation in vorticity is more intense than that in temperature, and many extreme values are found. The streamline is uplifted near the separation point due to the contribution of the particle inertia, which increases the recirculation zone of the quasi-steady vortex. Fewer particles enter the vortex near the waist portion from the separation region, and relatively more particles enter the recirculation region from the reattachment zone. The local streamline is straightened and flow heat transfer is enhanced. It is shown that the variation in the Nusselt number is strongly related to the critical points along the wall.  相似文献   

17.
18.
In the present work, enhancement of convective heat transfer rate in three-dimensional U-shaped enclosures using nanofluids is numerically investigated. Two different types of nanoparticles, namely, Cu, and Al2O3, with pure water, are the considered single-phase nanofluids. Natural convection and geometric parameter effects on the averaged Nusselt numbers are investigated. Velocity vectors and isotherm fields for the Al2O3/H2O nanofluid are presented at various Rayleigh numbers. The governing dimensionless equations are solved using the commercial finite-volume-based computational fluid dynamics code, FLUENT. Our results are consistent with previously published predictions. In particular, heat transfer enhancement is found to increase with increasing nanoparticles volume fractions, Rayleigh numbers, as well as cooled wall length extensions.  相似文献   

19.
离子风发生器是利用电晕放电引起空气流动的一种装置。利用COMSOL Multiphysics软件建立了基于线-板电极结构离子风发生器的计算模型,对离子风发生器强化通道内对流换热的能力开展了数值模拟研究。针对入口风速、发射极电压、初速度方向以及电极水平间距这4个关键因素进行研究,分析了4种因素对强化换热效果的影响。模拟结果表明:在入口风速较小时,离子风对换热的强化效果更好;当发射极电压较高,离子风射流和主流方向相反时,离子风的扰动作用更剧烈,对换热过程有更加显著的增强作用。而电极水平间距则存在最优值,可以使换热效果达到最优。  相似文献   

20.
本文对Morel的汽油机缸内对流换热模型进行了改进,把一维模型应用于燃烧过程的计算,可以体现汽油机燃烧时缸内温度、组分浓度和湍流的空间变化对对流换热的影响,得到燃烧时对流换热量随时间的变化和在缸内的径向分布情况.计算实例表明,面积平均的对流换热系数远大于Woschni公式得到的计算值,缸内热流量的变化与火焰面的位置有密切关系.应用本文的数值模拟方法,还可以预测发动机的几个参数改变时,对流换热量的相应变化情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号