首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Process units subject to fouling often require regular cleaning, giving rise to repeated cycles of fouling and cleaning. The initial stages of fouling are strongly influenced by the effectiveness of the most recent cleaning step and, similarly, the effectiveness and rate of cleaning are determined by the extent and nature of the deposit layer present on the surface. The optimal operating cycle will therefore be determined by fouling–cleaning interactions. Deposit aging is an important factor in this, as an aged deposit is usually more difficult to clean. Aging therefore introduces an element of choice into fouling–cleaning operating cycles, between in situ “chemical” methods and ex situ “mechanical” methods, with associated differences in effectiveness, time, and cost. This paper reports a reformulation of the cleaning scheduling problem to consider the choice of cleaning method, as well as the timing of cleaning. A case study based on a shell-and-tube heat exchanger processing crude oil is used to illustrate the concepts and scope of application of this approach. A novel and more general formulation of the problem, linking design, fouling, and cost aspects via dimensionless groups, is then presented and illustrated with a second case study based on a simpler exchanger model.  相似文献   

2.
《Applied Thermal Engineering》2000,20(15-16):1535-1544
Heat exchanger network retrofit using a pinch based approach is presented. In this approach, the criterion of minimum sensitivity of heat exchanger to fouling effects is accounted for. The present paper introduces this criterion without explaining its details that are described in the literature. A summary is given of HEN reconstruction in a crude distillation unit processing 4.2 million ton crude oil per year. While the total heat quantity of hot streams is 110 MW, the heat recovery in the existing HEN is 60 MW. Using Pinch Analysis, the target value of heat recovery at ΔTmin=10 K was determined at 91 MW. Measurements were carried out on the existing HEN with the aim to determine the influence of fouling effects on the heat transfer in the exchangers. Taking local constraints including fouling into account, HEN reconstruction was proposed. The heat savings in the reconstructed HEN was estimated at 75 MW.  相似文献   

3.
Abstract

Heat exchanger fouling has been studied for some time in the petroleum industry. As understanding of fouling dynamics and mitigation methods improves, refinery fouling mitigation strategies are changing. The implications of deposit aging in refinery units have not been addressed in detail: aging refers to where the deposit undergoes physical and chemical conversion over time. In the 2009 Heat Exchanger Fouling and Cleaning conference, Wilson et al. [Ageing: Looking back and looking forward] presented a simple framework illustrating how deposit aging impacts heat exchanger thermal and hydraulic performance. This paper presents insights into deposit aging gained from analysis of refinery monitoring data. Two case studies are presented: (i) one from the Preem refinery in Sweden where stream temperature, flow and gauge pressure measurements indicated a higher deposit thermal conductivity in exchangers located in the hotter section of the preheat train. (ii) US refinery stream temperature, flow and plant cleaning log data, showing an increased resistance to cleaning when deposits are exposed to high temperature for a prolonged period. The use of deposit aging analysis to improve exchanger operation is discussed.  相似文献   

4.
Fouling dominates the design of heat exchangers used in crude oil preheat trains. It also dominates the lifetime cost of the trains, where the most important cost factor is lost profit through reduced production. Thus, the design objective should be the identification of geometries that provide acceptable performance throughout a desired operating period. This paper suggests a new design approach for shell-and-tube heat exchangers in refinery preheat trains that uses dynamic crude oil fouling models rather than conventional fouling factors to yield designs that are capable of achieving a specified operating period between cleaning operations.  相似文献   

5.
Fouling is a serious operating problem in oil refinery distillation preheat trains (PHTs) as the reduction in heat transfer effectiveness not only reduces the overall rate of heat transfer but also causes difficulty in maintaining key temperatures in the network within their defined operating envelopes. This work considers the problem of controlling the desalter inlet temperature by using hot stream bypassing, within a PHT fouling mitigation strategy based on heat exchanger cleaning. The formulation of the problem is incorporated in the PHT simulator described by Ishiyama et al. (2009) [1]. The methodology is illustrated using a case study based on an industrial network subject to fouling, where the fouling rates of heat exchangers were extracted through a data reconciliation exercise. The case study scenarios suggest that our simulation-based tool should be effective in controlling desalter inlet temperature within a fouling management strategy.  相似文献   

6.
ABSTRACT

Visbreakers and other thermal cracking units are thermal process units in crude oil refineries that upgrade heavy petroleum, usually residual oils produced from atmospheric or vacuum distillation of crude oil. The associated process streams of these units consist of heavy hydrocarbons with very high viscosities and impurities, resulting in fouling of the heat exchangers used to cool or heat these streams. This paper presents a practical fouling analysis for thermal cracking units in a refinery in Germany. Fouling management at this refinery was initiated as part of the refinery energy-saving program. Following similar analysis of the refinery's crude preheat trains, heat exchanger networks associated in the thermal cracking units were modeled by entering the plant monitoring data, network topology, and heat exchanger geometries into a commercial heat exchanger network simulator, SmartPM. Fouling behaviors of vacuum residue streams and thermal cracker residue streams were identified and quantified. Both chemical reaction fouling and particulate fouling mechanisms were identified to be responsible for the fouling in these streams. Dynamic fouling models were fitted and used to predict fouling of these heavy petroleum streams, which fouled on both the shell and tube sides of the shell-and-tube heat exchangers.  相似文献   

7.
Fouling of heat exchangers causes reduced heat transfer and other penalties. Regular cleaning represents one widely used fouling mitigation strategy, where the schedule of cleaning actions can be optimised to minimise the cost of fouling. This paper investigates, for the first time, the situation where there are two cleaning methods available so that the mode of cleaning has to be selected as well as the cleaning interval. Ageing is assumed to convert the initial deposit, labelled ‘gel’, into a harder and more conductive form, labelled ‘coke’, which cannot be removed by one of the cleaning methods. The second method can remove both the gel layer and the coke layer, but costs more and requires the unit to be off-line longer for cleaning. Experimental data demonstrating the effects of ageing are presented. The industrial application is the comparison of cleaning-in-place methods with off-line mechanical cleaning. A process model is constructed for an isolated counter-current heat exchanger subject to fouling, where ageing is described by a simple two-layer model. Solutions generated by an NLP-based approach prove to be superior to a simpler heuristic. A series of case studies demonstrate that combinations of chemical and mechanical cleaning can be superior to mechanical cleaning alone for certain combinations of parameters.  相似文献   

8.
Fouling due to chemical reaction in preheat trains for the processing of crude oil plays a key role in the operation and maintenance costs and on greenhouse emissions to atmosphere in crude processing plants. A preheat train consists of a set of heat transfer units that provide the crude oil stream the required amount of thermal energy to reach its target temperature either by heat recovery or by direct firing. Fired heaters supply external high temperature heating through the burning of fuel which result in complex heat transfer processes due to the large temperature and pressure changes and vaporization that takes place inside the unit. In this work, a thermo-hydraulic analysis of the performance of fired heaters is carried out through the application of commercial software to solve the mathematical models using finite difference methods; the analysis is applied to the crude side of a vertical fired heater in order to evaluate the impact of process conditions such as throughput and crude inlet temperature (CIT) on the fouling that take place at the early stages of operation. Using a fouling rate model based on thermo-hydraulic parameters, fouling rates are predicted assuming steady state operation and clean conditions. Although variations in process conditions are known to influence fouling rates, little work has been done on the subject. In this work excess air and steam injection are studied as a means to mitigate fouling. Results show that throughput reduction brings about a marked increase in the fouling rates. A decrease in CIT affects only the convection zone and it is found that this effect is negligible. In terms of excess air, it is found that although it affects negatively the heater efficiency it can be used to balance heat transfer between the convection and radiation zone in a way that fouling rates are reduced; however this strategy should be considered right from the design stage. Finally it is observed that steam injection is an effective method to reduce fouling rates since it results in lower film temperatures and larger shear stress.  相似文献   

9.
Fouling is a challenging, longstanding, and costly problem affecting a variety of heat transfer applications in industry. Mathematical models that aim at capturing and predicting fouling trends in shell-and-tube heat exchangers typically focus on fouling inside the tubes, while fouling on the shell side has generally been neglected. However, fouling deposition on the shell side may be significant in practice, impairing heat transfer, increasing pressure drops, and modifying flow paths. In this paper, a new model formulation is presented that enables capturing fouling on the shell side of shell-and-tube heat exchangers including the effect of occlusion of the shell-side clearances. It is demonstrated by means of an industrial case study in a crude oil refinery application. The model, implemented in an advanced simulation environment, is fitted to plant data. It is shown to capture the complex thermal and hydraulic interactions between fouling growth inside and outside of the tubes, the effect of fouling on the occlusion of the shell-side construction clearances, and to unveil the impact on shell-side flow patterns, heat transfer coefficient, pressure drops, and overall exchanger performance. The model is shown to predict the fouling behavior in a seamless dynamic simulation of both deposition and cleaning operations, with excellent results.  相似文献   

10.
The existence of a `threshold' below which chemical reaction fouling of heat transfer surfaces by crude oil does not occur has been identified by Ebert and Panchal [Fouling Mitigation of Industrial Heat-Exchange Equipment, Begell House, 1997, 451–460] and clearly demonstrated by Knudsen et al. [Understanding Heat Exchanger Fouling and its Mitigation, Begell House, 1999, 265–272]. This phenomenon has important implications for the design and operation of heat exchangers in refinery pre-heat trains used for the processing of crudes. In this paper we show how a consideration of the fouling threshold condition can be incorporated into the design procedures for shell-and-tube heat exchangers. We then proceed to show how fouling can be mitigated through attention to heat exchanger design, particularly the choice of configuration. The cost of improperly designed units, based on the conventional use of `fouling factors', is demonstrated.  相似文献   

11.
Crystallization fouling during nucleate pool boiling is characterized with relatively rapid formation of a hard and brittle deposit layer. In this study, the impact of thermal shock is experimentally investigated on cleaning of various tubes when subjected to fouling of CaSO4 solutions. The heat transfer tubes included stainless-steel plain and finned tubes with fin densities of 19 and 40 fins per inch. The tubes were used during pool boiling for heat fluxes ranging from 80 to 300 kW/m2. The thermal shock is applied by the sudden decrease or increase in heat flux for approximately 30 s after the fouling layer is formed. In terms of cleaning, the experimental results showed far better performance for the plain tube. During the sudden change in heat flux the whole fouling layer cracked and peeled off, receiving again almost initial clean heat transfer performance. Contrariwise, the results for the finned tubes showed that the fouling layer was only affected marginally by the thermal shock.  相似文献   

12.
Abstract

The use of fouling factors in heat exchanger design and the lack of appreciation of fouling in traditional pinch approaches have often resulted in crude preheat networks that are subject to extensive fouling. The development of thermal and pressure drop models for crude oil fouling has allowed its effects to be quantified so that techno-economic analyses can be performed and design options compared. The application of these fouling models is described here on two levels: the assessment of increasing heat recovery in stream matches (e.g., by adding extra area to exchangers) and the design of a complete network using the Modified Temperature Field Plot. Application to a refinery case study showed that, at both the exchanger and network levels, designing for maximum heat recovery (e.g., using traditional pinch approaches) results in a less efficient system over time due to fouling effects.  相似文献   

13.
ABSTRACT

The impacts of nucleate boiling and pressure on crude oil fouling are factors that have not been heavily investigated in previous research. Variables such as wall temperature and fluid velocity/shear are often a main focus, as they are key variables for predictive fouling models, which provide insight to fouling thresholds. Research detailed in this report shows that nucleate boiling and pressure greatly impact the measured fouling rate of a crude oil tested using the Heat Transfer Research, Inc., rotating fouling unit. When nucleate boiling is occurring, the use of fouling resistance plots to measure fouling rates is not a reliable method due to the impact boiling has on the heat transfer coefficient. Visual inspection of fouling deposits to validate fouling resistance data has also been found to be critical. Images of fouling deposits are included. Fouling under nonboiling conditions was shown to increase with increasing pressure.  相似文献   

14.
《Applied Thermal Engineering》2003,23(17):2241-2253
The paper presents a method for designing of heat exchanger networks (HENs), which reduces the effects of thermal fouling resistance. The method is based on pinch technology, extended by two transformations. These are based on the criterion of minimum sensitivity to the fouling effects by a single heat exchanger and the HEN. The proposed method has been applied in the petrochemical industry where the two heat recovery systems, designed by the method described here, have been working successfully for some years.  相似文献   

15.
An investigation of variations in outlet temperatures of heat exchangers under fouling was carried out. The simulation of heat exchangers was performed by employing a linear fouling deposit function. The formation of deposits reduces heat exchangers effectiveness. There is inherently a linear nature between outlet and inlet temperatures of heat exchangers. The outlet temperatures can also be affected by up‐stream exchangers serving the same streams, and the up‐stream influence can be transferred in the heat system. The mathematical model of the cleaning cycle was outlined, based on the objective function of minimizing cost in unit operation time. According to the results, some heat exchangers can be given cleaning priority when the system is shut down, in order to maximize economic benefit. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20384  相似文献   

16.
For 20 years, Heat Transfer Research, Inc. (HTRI), has conducted dedicated, ongoing research into crude oil fouling behavior, specifically on developing test methods to measure fouling resistance over time and comparing fouling tendencies of different crude oils. More than 250 test runs with nineteen crude oils have been conducted. While current methods are sufficient for comparative fouling studies, general methods to predict fouling tendency remain elusive. Recent initiatives have focused our efforts on chemical characterization to screen crude oils and blends for fouling tendency, as well as on identifying thresholds for low fouling. Increasing the shear stress on the heat transfer surface as much as possible can mitigate heat exchanger fouling. Long-term success in controlling fouling depends upon a deeper understanding of the chemical characteristics of an individual crude oil and sound heat exchanger design practices. Current predictive fouling models are limited in their application, but improvements based on chemical characterization look promising.  相似文献   

17.
Heat exchangers and heat exchanger networks are extensively used for the purpose of recovering energy. In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450°C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m3/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.  相似文献   

18.
A major cause of refinery energy inefficiency is fouling in preheat trains. This has been a most challenging problem for decades, due to limited fundamental understanding of its causes, deposition mechanisms, deposit composition, and impacts on design/operations. Current heat exchanger design methodologies mostly just allow for fouling, rather than fundamentally preventing it. To address this problem in a systematic way, a large-scale interdisciplinary research project, CROF (crude oil fouling), brought together leading experts from the University of Bath, University of Cambridge, and Imperial College London and, through IHS ESDU, industry. The research, coordinated in eight subprojects blending theory, experiments, and modeling work, tackles fouling issues across all scales, from molecular to the process unit to the overall heat exchanger network, in an integrated way. To make the outcomes of the project relevant and transferable to industry, the research team is working closely with experts from many world leading oil companies. The systematic approach of the CROF project is presented. Individual subprojects are outlined, together with how they work together. Initial results are presented, indicating that a quantum progress can be achieved from such a fundamental, integrated approach. Some preliminary indications with respect to impact on industrial practice are discussed.  相似文献   

19.
Heat exchanger networks (HEN) play important roles in a chemical plant. In a plant lifetime, it may be required to retrofit a HEN several times in order to improve the energy efficiency or to accommodate the increase in throughput. The network pinch method developed by Asante and Zhu [1] can identify bottlenecks, which limit the increase in heat recovery for an existing HEN and also indicate promising structure changes to overcome the bottlenecks. As a result of HEN retrofit, additional surface area is required for some heat exchangers. There are a number of options to provide additional area, such as installing new shells or new units, adding new tubes to an existing bundle, etc. If heat transfer enhancement (HTE) is applied, additional area can be reduced significantly. This can result in a great reduction in capital cost and implementation time for modifications. However, in practice, heat transfer enhancement techniques have not been applied extensively, particularly in the petroleum refining industry. Several main aspects need to be addressed when HTE is taken into consideration for HEN retrofit. The first is how to determine which heat exchangers are suitable to apply HTE in the network and the second issue is to determine what level of augmentation of heat transfer performances is required. The last is about how to select a particular enhancement technique that can fulfil the enhancement requirement. A new strategy for applying HTE in HEN retrofit at the conceptual design stage has been developed. The above issues can be addressed properly by this new method. The new procedure is demonstrated using a case study.  相似文献   

20.
Abstract

Parallel branches are commonly observed in industrial heat exchanger networks (HENs). Despite the important relationship between flow distribution and network efficiency, not all parallel branches comprise of flow controllers or not least, flow measurements. When the network is subject to fouling, uncontrolled flow branches can introduce undesired phenomenon such as thermo-hydraulic channeling (THC) [presented at the 2007 HEFC conference; Ishiyama et al., Effect of fouling on heat transfer, pressure drop and throughput in refinery preheat trains]. Recent analysis of crude preheat train heat exchangers has shown the need to use THC models, in particular, for situations where there is insufficient flow measurement data, especially in nonsymmetric branches. This paper revisits the THC model and highlight practical importance of the THC phenomenon through analysis of plant data. The hydraulic aspect of the analysis is strongly linked to the knowledge of deposit thermal conductivity. A case study of a section of a crude refinery HEN is used to illustrate the use of thermo-hydraulic models in data reconciliation to understand flow imbalances caused due to differences in operating conditions and fouling of heat exchangers in each branch of a parallel network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号