首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hideo Mori 《传热工程》2016,37(7-8):686-695
For the development of a high-performance heat exchanger using small channels or minichannels for air-conditioning systems, it is necessary to clarify the characteristics of vapor‐liquid two-phase flow and heat transfer of refrigerants in small-diameter tubes. In this keynote paper, the related research works that have already been performed by the author and coworkers are introduced. Based on the observations and experiments of R410A flowing in small-diameter circular and noncircular tubes with hydraulic diameter of about 1 mm, the characteristics of vapor‐liquid two-phase flow pattern and boiling heat transfer were clarified. In low quality or mass flux and low heat flux condition, in which the flow was mainly slug, the “liquid film conduction evaporation” heat transfer peculiar to small-diameter tubes prevailed and exhibited considerably good heat transfer compared to nucleate boiling and forced convection evaporation heat transfer. The effects of the tube cross-sectional shape and flow direction on the heat transfer primarily appeared in the region of the “liquid film conduction evaporation” heat transfer. A new heat transfer correlation considering all of three contributions has been developed for small circular tubes.  相似文献   

2.
An experimental investigation of the effect of mechanical vibrations of a copper flat circular surface on the pool boiling heat transfer coefficient of water at atmospheric pressure are presented in this paper. A vibration exciter was used to vibrate this copper test surface vertically. Effect of frequency and amplitude of vibration on the boiling heat transfer coefficient was studied. An increase in the heat transfer coefficient was observed at low frequency and amplitudes, at higher amplitude and frequency heat transfer deteriorates. Heat transfer coefficient increases up to 26% with vibration intensity, represented by vibrational Reynolds number.  相似文献   

3.
《传热工程》2012,33(1):17-35
Abstract

The present study mainly concentrates on the prediction of two-phase heat transfer coefficient for saturated flow boiling conditions in minichannels. The experimental database has been generated through systematic experiments on the basis of the effect of aspect ratio. In the experiments, deionized water is used as the working fluid and five single rectangular minichannels with different aspect ratios but with the same hydraulic diameter of 1.2?mm have been tested. The database (120 data points) contains mass fluxes of 70???310?kg m?2s?1, wall heat fluxes of 216.2???1,117.6 kWm?2, vapor qualities of 0.012???0.788, liquid Reynolds numbers of 59.6???1,201.7, and aspect ratios of 0.25???4.00. The data obtained has been used to evaluate the previous correlations proposed for different scales (macro???mini???micro), and, then, a new empirical correlation has been developed. This new correlation presents clearly a good performance with an overall mean absolute error of 9.2%, and all the predictions fall within ±30% error band.  相似文献   

4.
Flow boiling in microchannels promises high heat transfer due to the combined effect of latent heat of vaporization and forced convection in confined spaces. However, flow boiling based miniaturized thermal management devices are limited due to instability induced dryout. While several efforts have been made to delay instabilities via advanced surface modification techniques, there is a need to expand the scope of applications by developing low-cost and scalable fabrication technologies for commonly used heat exchanger materials. In this paper, we use a facile and self-limiting chemical oxidation technique for fabricating sharp needle-like superhydrophilic CuO nanostructures within six parallel 500 × 250 µm2 microchannels spread uniformly over a 1 × 1 cm2 area in a copper heat sink. We demonstrate heat transfer enhancement with nanostructured microchannels (NSM) without any appreciable change either in the average pressure drop or the fluctuations in comparison to baseline plain wall microchannels (PWM). Analysis of the high-speed images was performed to attribute the enhancement with NSM to the presence of a capillarity-fed thin-film evaporation regime, which otherwise was absent in PWM. We believe that these results are encouraging and suggest that the heat sink geometry can be optimized to investigate the true potential of nanostructured microchannels.  相似文献   

5.
The present study investigated the effect of smooth tube flattening on heat transfer enhancement in an evaporator. The tubes with internal diameter of 8.7 mm were flattened into an oblong shape with different inside heights. The test setup was basically a vapor compression refrigeration system equipped with all necessary measuring instruments. Refrigerant R-134a flowing inside the tube was heated by an electrical coil heater wrapped around it. The ranges of mass velocities were from 74 to 106 kg/m2-s and vapor quality varied from 25% to 95%. Analysis of the collected data indicated that the heat transfer coefficient elevates by increasing the mass velocity and vapor quality in flattened tubes just like the round tube. The flow boiling heat transfer coefficient increases when the flattened tube is used instead of the round tube. The highest heat transfer coefficient enhancement of 172% was achieved for the tube with the lowest inside height at mass velocity of 106 kg/m2-s and vapor quality of 85%. Finally, based on the present experimental results, a correlation was developed to predict the heat transfer coefficient in flattened tubes.  相似文献   

6.
Boiling heat transfer enhancement for a passive electronics cooling design is presented in this paper. A novel pool boiling enhancement technique is developed and characterized. A combination of surface modification by metallic coating and micro-machined porous channels attached to the modified surface is tested and reported. An experimental rig is set up using a standard BGA package with 12 mm × 12 mm thermal die as a test surface. The limiting heat flux for a horizontally oriented silicon chip with fluorocarbon liquid FC-72 is typically around 15 W/cm2. Boiling heat transfer with the designed enhancement techniques is investigated, and the factors influencing the enhancement are analyzed. The metallic coated surface at 10°C wall superheat has a heat flux six times larger than an untreated chip surface. Micro-machined porous channels with different pore sizes and pitches are tested in combination with the metallic coated surface. The boiling heat flux is seven times larger at lower wall superheat compared to the plain chip surface. Maximum critical heat flux (CHF) of 38 W/cm2 is obtained with 0.3 mm pore diameter and 1 mm pore pitch. A ratio of pore diameter and pore pitch is found to correlate well with the heat transfer enhancement obtained by experiments. Structures with smaller pore diameter to pitch ratio and larger pore opening are found to have higher heat transfer enhancement in the tested combination.  相似文献   

7.
Xin Kong  Yueping Deng  Yonghai Zhang 《传热工程》2013,34(17-18):1552-1561
ABSTRACT

The enhancement of pool boiling heat transfer in FC-72 on a novel mixed-wettability surface was experimentally investigated. On the mixed-wettability surface, the micro-pin-finned area and the smooth area were distributed in the form of fractal by using micromaching method (dry etching method). From the comparison with the smooth surface and the micro-pin-finned surface, the mixed-wettability surface could efficiently enhance the heat transfer performance in the nucleate boiling region, and the critical heat flux was also efficiently improved. From the boiling experiment result, it is discovered that a larger heat transfer area does not always lead to a better heat transfer performance. From the peculiar boiling phenomenon of the novel surface, it can be observed that large number of nucleation sites are formed in the micro-pin-finned area, and the small bubbles grow, collide, merge and move rapidly to the nearby smooth channel. When the bubble grows large enough, it will departure quickly under the effect of channel pressure. It can be concluded that the mixed-wettability surface can not only guarantee sufficient nucleation sites, but also facilitate the departure of bubbles and enhance the bubbles' interaction.  相似文献   

8.
ABSTRACT

Experiments were carried out to study heat transfer and two-phase flow patterns during boiling in a Hele-Shaw cell filled with pure water vapor at atmospheric pressure and with a central inlet of a liquid jet. The Hele-Shaw cell was based on a circular copper rod surface and a polycarbonate plate permitting optical access and thus high-speed cinematography. The diameter of the heated copper rod was 10 mm, the jet diameters were 0.5 and 1 mm, and spacing was varied between 50, 100, and 200 μm. The heat was applied through 4 cartridge heaters with a maximum heat flux of 327 W/cm2. Results showed how high-volume flow rates for the liquid jet led to jet impingement heat transfer while low flow rates led to a Hele-Shaw flow boiling system. The relationship between the volume flow rate and the temperature difference differed significantly between these two regimes. Different flow patterns and evaporation fronts were observed using high-speed cinematography. They strongly depended on jet properties, applied heat flux, and gap spacing. The efficiency of the Hele-Shaw flow boiling system during high heat flux levels was attributed to high interface velocities, combined with viscous fingering at the interface. This combination led to high wetting rates with substantial microlayer evaporation. Good results regarding the heat transfer and the pressure drop were obtained with the final configuration of a 10-mm copper rod diameter, a jet diameter of 1 mm, and a spacing of 0.1 mm. A rather surprising observation was the existence of a stable rotation of an evaporating liquid jet in the Hele-Shaw boiling chamber. The driving mechanism for the rotation with a frequency of 105 Hz was the rapid microlayer evaporation at the rear side of the rotating liquid jet.  相似文献   

9.
The effect of a D.C. electric field on nucleate boiling heat transfer for refrigerants, R11, R113, and FC72, was investigated experimentally in a single-tube shell/tube heat exchanger by using the temperature control method of wall superheat. Also the behavior of bubble under nonuniform electric field produced by wire electrodes was studied by numerical calculation. For R11, the electrohydrodynamic (EHD) enhancement for boiling heat transfer was observed for all ranges of wall superheat tested. However, the enhancement in boiling heat transfer disappeared if the wall superheat exceeded 13°C for R113, and no electric field effect on the boiling heat transfer was observed for FC72. An application of approximately 5 kV was enough to eliminate the boiling hysteresis for R11 and R113. Numerical study of the electric field in a single medium has hinted that the bubbles are forced away from the heating surface and toward the electrostatic stagnation point by the dielectrophoretic force. Such modified bubble motion turns out to promote the boiling heat transfer if one uses proper electrode configuration.  相似文献   

10.
M. Gao  Y. Cao 《传热工程》2013,34(3):57-65
To achieve a high heat-flux level and reduce manufacturing costs associated with conventional heat pipes, the concept of network heat spreaders employing a boiling heat-transfer mechanism in a narrow space had been proposed, and several flat-plate wickless heat spreaders had been designed and fabricated. The heat spreaders had been tested under different working conditions and orientations relative to gravity with very good results. The previously tested network heat spreaders, however, were based on plates with a relatively large size for general heat spreading purposes. In the present study, network heat spreaders with overall dimensions of 78 2 62 2 3.2 mm are designed and fabricated. Spreaders of this size are intended for use as heat sinks of high-power electronic components. External cooling fins are attached to enhance air-cooling heat transfer rate. The network heat spreaders are tested under various working conditions with water as the working fluid. The maximum heat input rate achieved is about 150 W with a corresponding heat flux of 60 W/cm 2 . Compared to the performance of a solid copper plate having the same overall size as the spreader, the maximum temperature difference over the surface is reduced from about 32°C to 3.3°C. The heat transfer performance of the spreader is also largely dependent on the filling ratio of the working fluid and the boiling heat transfer in the narrow space. For these reasons, boiling heat transfer mechanisms in a narrow space are analyzed, and a spreader design that would improve the performance in a horizontal position is described.  相似文献   

11.
ABSTRACT

The aim of this study is to simplify the process of discharge thermal energy combined desalination with power system by integrating the two existing heat exchangers (condensers) into a new multistream one. This system is a heat recovery unit, which is used to cogenerate water and power. Two shell-and-tube condensers operate in a closed power cycle and a desalination system for cooling an ammonia mixture as a working fluid and condensing a pure vapor, respectively. Here, a two-phase flow multistream condenser is utilized instead of the two low-exergy-efficiency shell-and-tube condensers. The results proved that the proposed technique leads to improving its exergy efficiency by 15%. The performance of the proposed condenser was analyzed by applying parametric optimization.  相似文献   

12.
This paper presents results concerning flow boiling heat transfer in three parallel vertically oriented and asymmetrically heated rectangular minichannels. Each minichannel was 1.7 mm deep, 16 mm wide, and 180 mm long. The heated element for Fluorinert FC-72 flowing in the minichannels was a thin foil. Infrared thermography was used to determine changes in the temperature on the outer smooth side of the foil. Two-phase flow patterns were observed through a glass pane. The heated surfaces in contact with the fluid in the minichannels differed in roughness. In one minichannel the surface was smooth. In the other two, the surface was enhanced. Two types of surface enhancement were analyzed: a surface with unevenly distributed minicavities and a surface coated with metallic powder applied by soldering. This paper analyzes the effects of the microstructured heated surface on the heat transfer coefficient. The results are presented as: relationships between the heat transfer coefficient and the vapor quality, boiling curves and two-phase flow images. The experimental data obtained for the two types of enhanced surfaces was compared with the results recorded for the smooth surface. The highest local values of the heat transfer coefficient were reported for the enhanced foil with minicavities.  相似文献   

13.
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m?2 s?1, heat flux from 0 to 55 kW m?2, exit saturation temperatures of 31 and 41°C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m?1 and from 1 to 7 kW m?2 K?1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.  相似文献   

14.

A state-of-the-art overview of recent work on boiling and two-phase flows in microchannels are reviewed, focusing primarily on the high points of recent developments. The topics covered include critical heat fluxes and their prediction in microchannels, new two-phase flow pattern maps, flow regimes and visualization in microchannels, boiling phenomena and flow instabilities in multi-microchannel cooling elements, flow boiling prediction methods specifically for microchannels and their comparison to data, trends in flow boiling data in microchannels and mechanisms that may be responsible for the seemingly divergent trends, and two-phase pressure drops in microchannels.  相似文献   

15.
Babak Lotfi 《传热工程》2020,41(13):1117-1142
Abstract

As a new type of fin structure in finned tube heat exchangers, dimple turbulators exhibit excellent potential for thermo-hydraulic performance enhancement. A three-dimensional numerical simulation study was conducted to investigate the influences of five kinds of innovative concave dimple turbulators (CDTs), namely – elliptical dimple, conical frustum dimple, trapezoidal prism dimple, leeward triangular dimple and upward triangular dimple (UwTD) on the thermo-hydraulic performance enhancement in a plate fin-and-elliptical tube (PFET) heat exchanger, where CDTs are textured on the fin surface transversely between the elliptical tubes. The computational results are analyzed by considering the performance evaluation criterion for the PFET heat exchangers with different types of CDT shapes. The present investigation demonstrates that the heat transfer enhancement is intimately pertained to ejection with longitudinal counter-rotating flow, strengthened secondary flow and vortex structures at the downstream rim of CDT. A parametric study on the CDTs indicated that the UwTD vortex turbulators give better thermo-hydraulic performance under the present conditions. The numerical simulation results illustrated different secondary flow structures and heat transfer characteristics of the CDTs with various shapes, which disclosed the influential mechanisms of differently shaped dimple turbulators on the heat transfer augmentation in PFET heat exchangers.  相似文献   

16.
In this paper, geyser boiling phenomenon (GBP) in a two-phase closed thermosyphon has been investigated experimentally. Here, the effects of the inclination angle, filling ratio, input heat rate, mass flowrate of coolant, and inside diameter of the tube on the GBP have been discussed. Three copper thermosyphons with inside diameters of 14 mm, 20 mm, and 24 mm and a length of 1000 mm were employed. Distilled water was used as the working fluid. A series of experiments was carried out to investigate the effect of the inclination angle range of 5° to 90°, the input heat rate range of 50 to 312.4 W, the coolant mass flow rate range of 0.00389 to 0.0164 kg/s, and the filling ratio range of 15 to 45%. The GBP has been investigated by analyzing the time variations of the evaporator and adiabatic wall temperature and outlet water temperature from condenser jacket. The results show that the period of GBP was longer for higher inclination angles and filling ratios. Furthermore, it was discovered that the GBP did not take place for inclination angles of less than 15°.  相似文献   

17.
This article reports on the heat transfer characteristics of columnar, vertically aligned, multiwall carbon nanotubes grown on a patterned Si surface. In the first part, we describe the procedure for patterning the silicon (Si) surface and the growth of multiwall carbon nanotubes (MWCNTs) on these patterned surfaces. The diameter of MWCNTs grown by chemical vapor deposition technique was in the range of 30–80 nm. In the second part, structures mimicking macroscopic finned heat sinks are used for enhancing forced convective heat transfer on a silicon substrate. Convective heat transfer coefficient has been experimentally measured for silicon substrates with and without MWCNT-based fins on it. The configuration with MWCNTs based fins shows an enhancement in convective heat transfer of 40% and 20%, as maximum and average value, respectively, compared to the bare silicon. Experiments have been carried out in a wind tunnel with air as coolant in fully turbulent regime. These encouraging results and the possibility of growing structures directly on silicon can be regarded as a first step.  相似文献   

18.
To minimize flow boiling instabilities in two-phase heat sinks, two different types of microporous coatings were developed and applied on mini- and small-channel heat sinks and tested using degassed R245fa refrigerant. The first coating was epoxy based and was sprayed on heat sink channels, while the second coating was formed by sintering copper particles on heat sink channels. Minichannel heat sinks had overall dimensions 25.4 mm × 25.4 mm × 6.4 mm and 12 rectangular channels with a hydraulic diameter 1.7 mm and a channel aspect ratio of 2.7. Small-channel heat sinks had the same overall dimensions, but only three rectangular channels with hydraulic diameter 4.1 mm and channel aspect ratio 0.6. The microporous coatings were found to minimize parallel channel instabilities for minichannel heat sinks and to reduce the amplitude of heat sink base temperature oscillations from ~6°C to slightly more than 1°C. No increase in pressure drop or pumping power due to the microporous coating was measured. The minichannel heat sinks with porous coating had on average 1.5 times higher heat transfer coefficient than uncoated heat sinks. Also, the small-channel heat sinks with the “best” porous coating had on average 2.5 times higher heat transfer coefficient and the critical heat flux was 1.5 to 2 times higher compared with the uncoated heat sinks.  相似文献   

19.
Remarkably different behaviors are found when comparing micro-scale flow boiling heat transfer data by distinct authors, even under similar experimental conditions. Such differences are almost certainly related to the complexity of confined forced-flow boiling. Certain aspects of the phenomenon, which are negligible in the macro-scale, become surprisingly relevant when the system size becomes small. From the results reported in the literature on the thermal-fluid features of evaporating flows in small channels, the following study presents a discussion concerning convective boiling heat transfer, highlighting the aspects that are characteristic to confined two-phase flows.  相似文献   

20.
《传热工程》2012,33(9):786-791
Two-phase hydraulic characteristics, in terms of pressure drop and void fraction data, are reported for boiling of single-component hydrocarbon fluids in vertical upflow. These data were obtained simultaneously with the boiling heat transfer measurements. The systematic trends of the measured pressure gradient with respect to vapor quality, mass flux, and pressure are examined. This provides useful information in terms of the relative importance of the constituent parts of the two-phase pressure gradients and confirms the internal consistency of the measured data. These two-phase pressure-drop data under flow boiling conditions are then compared with various correlations from the open literature and also with a proprietary correlation used in commercial heat exchanger design and simulation software. Typical results of these comparisons are presented. It is noted that in the near-zero vapor quality region the measured pressure-gradient data may be lower than expected because of the effect of subcooled boiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号