首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flow boiling in microchannels is characterized by the considerable influence of capillary forces and constraint effects on the flow pattern and heat transfer. In this article we utilize the features of gas–liquid flow patterns in rectangular microchannels under adiabatic conditions to explain the regularities of refrigerants flow boiling heat transfer. The flow-pattern maps for the upward and horizontal nitrogen–water flow in a microchannel with the size of 1500 × 720 μm were determined via dual-laser flow scanning and compared with corrected Mishima and Ishii prediction. Flow boiling heat transfer was studied for vertical and horizontal microchannel heat sink with similar channels using refrigerants R-21 and R-134a. The data on local heat transfer coefficients were obtained in the range of mass flux from 33 to 190 kg/m2-s, pressure from 1.5 to 11 bar, and heat flux from 10 to 160 kW/m2. The nucleate and convective flow boiling modes were observed for both refrigerants. It was found that heat transfer deterioration occurred for annular flow when the film thickness became small to suppress nucleate boiling. The mechanism of heat transfer deterioration was discussed and a model of heat transfer deterioration was applied to predict the experimental data.  相似文献   

2.
ABSTRACT

Flow boiling heat transfer in microchannels is used today in many diverse applications. The previous studies addressing the effect of channel size, heat flux, vapor quality, and mass flux on heat transfer during flow boiling are reviewed in the present paper. The relationship between flow characteristics and flow boiling heat transfer was studied experimentally for refrigerant R-C318 at moderate reduced pressures where the contribution of nucleate boiling is decisive. Flow boiling mechanisms were identified using an annular microchannel with transparent outer wall for successive visualization of boiling. The considerable suppression of nucleate boiling heat transfer was observed at transition to annular flow and explained by formation of a liquid flow with thin film and dry spots. A general equation for prediction of two-phase flow boiling heat transfer inside the circular, annular, and rectangular microchannels is proposed and verified using the experimental data. This equation accounts for the nucleate boiling suppression, forced convection, and thin film evaporative heat transfer in the form that allows to distinguish more clearly the contribution of each mechanism of heat transfer under the conditions, when it is predominant. A new approach for prediction of transition to the annular flow is proposed and verified, using the experimental data.  相似文献   

3.
Flow boiling experiments were conducted in straight and expanding microchannels with similar dimensions and operating conditions. Deionized water was used as the coolant. The test vehicles were made from copper with a footprint area of 25 mm × 25 mm. Microchannels having nominal width of 300 μm and a nominal aspect ratio of 4 were formed by wire cut Electro Discharge Machining process. The measured surface roughness (Ra) was about 2.0 μm. To facilitate easier comparison with the straight microchannels and also to simplify the method of fabrication, the expanding channels were formed with the removal of fins at selected location from the straight microchannel design, instead of using a diverging channel. Tests were performed on both the microchannels over a range of mass fluxes, heat fluxes and an inlet temperature of 90 °C. It was observed that the two-phase pressure drop across the expanding microchannel heat sink was significantly lower as compared to its straight counterpart. The pressure drop and wall temperature fluctuations were seen reduced in the expanding microchannel heat sink. It was also noted that the expanding microchannel heat sink had a better heat transfer performance than the straight microchannel heat sink, under similar operating conditions. This phenomenon in expanding microchannel heat sink, which was observed in spite of it having a lower convective heat transfer area, is explained based on its improved flow boiling stability that reduces the pressure drop oscillations, temperature oscillations and hence partial dry out.  相似文献   

4.
Flow boiling through microchannels is characterized by nucleation and growth of vapor bubbles that fill the entire channel cross-sectional area. As the bubbles nucleate and grow inside the microchannel, a thin film of liquid or a microlayer gets trapped between the bubbles and the channel walls. The heat transfer mechanism present at the channel walls during flow boiling is studied numerically. It is then compared to the heat transfer mechanisms present during nucleate pool boiling and in a moving evaporating meniscus. Increasing contact angle improved wall heat transfer in case of nucleate boiling and moving evaporating meniscus but not in the case of flow boiling inside a microchannel. It is shown that the thermal and the flow fields present inside the microchannel around a bubble are fundamentally different as compared to nucleate pool boiling or in a moving evaporating meniscus. It is explained why thin-film evaporation is the dominant heat transfer mechanism and is responsible for creating an apparent nucleate boiling effect inside a microchannel.  相似文献   

5.
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 μm width and 389 μm depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20–80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5–62.3 W/cm2 depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 μm wide and 389 μm deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal dependence on flow rate once boiling is initiated in the microchannels, and varies almost linearly with increasing heat flux.  相似文献   

6.
Bubble growth behavior and heat transfer characteristics during subcooled flow boiling in segmented finned microchannels have been numerically investigated. Simulations have been performed for a single row of segmented finned microchannel and predicted results are compared with experimental investigations. Onset of nucleation, formation of bubbles, their growth and movements have been investigated for different values of applied heat flux. Mechanism of bubble expansion without clogging resulting in enhanced heat transfer in segmented finned microchannels has been explained. Temperature and pressure fluctuations during subcooled flow boiling condition have been investigated. It is observed that at high heat flux, thin liquid film trapped between the bubble and channel wall is evaporated leading to localized heating effect. Predicted flow patterns are similar to experimental results. However, simulations over predict the bubble growth rate and heat transfer coefficient.  相似文献   

7.
In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study was to experimentally establish how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux, and vapor quality. The copper microchannel heat sink contains 21 microchannels with 335 × 930 μm2 cross section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate was measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux varied within 200–600 kg/m2-s, and pressure varied within 6–16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It showed that nucleate boiling is the dominant mechanism for heat transfer. A new model of flow boiling heat transfer, considering nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper.  相似文献   

8.
Flow boiling in microchannels has received considerable attention from researchers worldwide in the last decade. A scaling analysis is presented to identify the relative effects of different forces on the boiling process at microscale. Based on this scaling analysis, the flow pattern transitions and stability for flow boiling of water and FC-77 are evaluated. From the insight gained through the careful visualization and thermal measurements by previous investigators, similarities between heat transfer around a nucleating bubble in pool boiling and in the elongated bubble/slug flow pattern in flow boiling are brought out. The roles of microlayer evaporation and transient conduction/microconvection are discussed. Furthermore, it is pointed out that the convective contribution cannot be ruled out on the basis of experimental data which shows no dependence of heat transfer coefficient on mass flow rate, since the low liquid flow rate during flow boiling in microchannels at low qualities leads to laminar flow, where heat transfer coefficient is essentially independent of the mass flow rate. Specific suggestions for future research to enhance the boiling heat transfer in microchannels are also provided.  相似文献   

9.
Local heat transfer coefficients and pressure drops during boiling of the dielectric liquid fluorinert FC-77 in parallel microchannels were experimentally investigated in recent work by the authors. Detailed visualizations of the corresponding two-phase flow regimes were performed as a function of a wide range of operational and geometric parameters. A new transition criterion was developed for the delineation of a regime where microscale effects become important to the boiling process and a conventional, macroscale treatment becomes inadequate. A comprehensive flow regime map was developed for a wide range of channel dimensions and experimental conditions, and consisted of four distinct regions – bubbly, slug, confined annular, and alternating churn/annular/wispy-annular flow regimes. In the present work, physics-based analyses of local heat transfer in each of the four regimes of the comprehensive map are formulated. Flow regime-based models for prediction of heat transfer coefficient in slug flow and annular/wispy-annular flow are developed and compared to the experimental data. Also, a regime-based prediction of pressure drop in microchannels is presented by computing the pressure drop during each flow regime that occurs along the microchannel length. The results of this study reveal the promise of flow regime-based modeling efforts for predicting heat transfer and pressure drop in microchannel boiling.  相似文献   

10.
A simultaneous visualization and measurement study have been carried out to investigate flow boiling instabilities of water in microchannels at various heat fluxes and mass fluxes. Two separate flow boiling experiments were conducted in eight parallel silicon microchannels (with flow interaction from neighboring channels at headers) and in a single microchannel (without flow interaction), respectively. These microchannels, at a length of 30 mm, had an identical trapezoidal cross-section with a hydraulic diameter of 186 μm. At a given heat flux and inlet water temperature, it was found that stable and unstable flow boiling regimes existed, depending on the mass flux. A flow boiling map, in terms of heat flux vs mass flux, showing stable flow boiling regime and unstable flow boiling regime is presented for parallel microchannels as well as for a single microchannel, respectively, at an inlet water temperature of 35 °C. In the stable flow boiling regime, isolated bubbles were generated and were pushed away by the incoming subcooled liquid. Two unstable flow boiling regimes, with long-period oscillation (more than 1 s) and short-period oscillation (less than 0.1 s) in temperature and pressure, were identified. The former was due to the expansion of vapor bubble from downstream while the latter was owing to the flow pattern transition from annular to mist flow. A comparison of results of flow boiling in parallel microchannels and in a single microchannel shows that flow interaction effects from neighboring channels at the headers are significant.  相似文献   

11.
Flow boiling in microchannels is favored by the heat transfer community due to the high heat transfer rates that can be obtained with lower mass flow rates. However, the heat transfer rates for flow boiling in microchannels are impacted by flow reversals and flow instabilities. An open microchannel structure was recently proposed to reduce the impact of the flow boiling instabilities. Subcooled flow boiling experiments were conducted in open microchannels using deionized water. The open microchannels had 6 parallel channels with a 0.3 mm uniform thickness gap above them The channels were fabricated on a 6 mm × 40 mm copper block. The channels were 0.5 mm wide and 0.3 mm deep with 0.43 mm wide fins between them. Flow visualizations were performed with a high-speed CCD camera with the results showing that the flow regimes in the open microchannels differ from those in closed microchannels with stratified flow and no flow instability. Two types of confined bubbles were observed with characterizations of the effects of the bubbles on each other. The heat transfer mechanisms for flow boiling in open microchannels are also described.  相似文献   

12.
A simultaneous visualization and measurement study has been carried out to investigate effects of inlet/outlet configurations on flow boiling instabilities in parallel microchannels, having a length of 30 mm and a hydraulic diameter of 186 μm. Three types of inlet/outlet configurations were investigated. Fluid flow entering to and exiting from the microchannels with the Type-A connection was restricted because the inlet and outlet conduits were perpendicular to the microchannels. The fluid flow had no restriction in entering to and existing from the microchannels with the Type-B connection. In the Type-C connection, fluid flow was restricted in entering each microchannel but was not restricted in exiting from the microchannels. It is found that amplitudes of temperature and pressure oscillations in the Type-B connection are much smaller than those in the Type-A connection under the same heat flux and mass flux conditions. On the other hand, nearly steady flow boiling exists in the parallel microchannels with the Type-C connection under the experimental conditions. Therefore, this configuration is recommended for high-heat-flux microchannel applications. As predicted, the stability threshold is determined by the minimum in the pressure-drop-versus-flow-rate curve. The pressure drop and heat transfer coefficient versus vapor quality for flow boiling in microchannels with the Type-C connection are presented. It is found that experimental data of pressure drop are higher and heat transfer coefficients are lower for boiling flow at high vapor quality in microchannels than those predicted from correlation equations for boiling flow in macrochannels, due to local dryout.  相似文献   

13.
Recent literature indicates that under certain conditions the heat transfer coefficient during flow boiling in microchannels is quite similar to that under pool boiling conditions. This is rather unexpected, as microchannels are believed to provide significant heat transfer enhancement under single-phase as well as flow boiling conditions. This article explores the underlying heat transfer mechanisms and illustrates the similarities and differences between the two processes. Formation of elongated bubbles and their passage over the microchannel walls have similarities to the bubble ebullition cycle in pool boiling. During the passage of elongated bubbles, the longer duration between two successive liquid slugs leads to wall dryout and a critical heat flux that may be lower than that under pool boiling conditions. A clear understanding of these phenomena will help in overcoming these limiting factors and in developing strategies for enhancing heat transfer during flow boiling in microchannels.  相似文献   

14.
The effect of flow instabilities on flow boiling heat transfer in microchannels is investigated using water as the working fluid. The experimental test section has six parallel rectangular microchannels, each having a cross-sectional area of 1054 × 197 microns. Flow restrictors are introduced at the inlet of each microchannel to stabilize the flow boiling process and avoid the backflow phenomena. The mass flow rate, inlet temperature of water, and the electric current supplied to the resistive cartridge heater are controlled to provide quantitative heat transfer information. The results are compared with the unrestricted flow configuration.  相似文献   

15.
A simultaneous visualization and measurement investigation has been carried out on flow boiling of water in parallel silicon microchannels of trapezoidal cross-section. Two sets of parallel microchannels, having hydraulic diameters of 158.8 and 82.8 μm, respectively, were used. The visualization study shows that once boiling heat transfer is established, two-phase flow and single-phase liquid flow appear alternatively with time in the microchannels. Large-amplitude/long-period fluctuations with time in wall temperatures, fluid temperatures, fluid pressures, and fluid mass flux, are measured for the first time during flow boiling in the microchannels. The fluctuation periods are found to be dependent on channel size, heat flux, and mass flux. The mechanism of the periodic boiling fluctuations in this experiment as well as their comparisons with other boiling fluctuations phenomena reported previously, are also discussed. The experimental results confirm that large-amplitude/long-period boiling fluctuations can be sustained when the fluctuations of pressure drop and mass flux have phase differences.With the aid of a microscope and high-speed video recording system, bubbly flow, slug flow, churn flow, and other peculiar flow patterns, are observed during two-phase flow periods in the microchannels.  相似文献   

16.
Convective boiling in transparent single microchannels with similar hydraulic diameters but different shaped cross-sections was visualized, along with simultaneous measurement of the local heat transfer coefficient. Two types of microchannels were tested: a circular Pyrex glass microtube (210 μm inner diameter) and a square Pyrex glass microchannel (214 μm hydraulic diameter). A 100-nm-thick semi-transparent ITO/Ag thin film sputtered on the outer wall of the microchannel was used for direct joule heating of the microchannel.The flow field visualization showed semi-periodic variation in the flow patterns in both the square and circular microchannels. Such variation was because the confined space limited the bubble growth in the radial direction.In the square microchannel, both the number of nucleation bubbles and the local heat transfer coefficient increased with decreasing vapor quality. The corners acted as active nucleation cavities, leading to the higher local heat transfer coefficient. In contrast, lack of cavities in the smooth glass circular microchannel yielded a relatively smaller heat transfer coefficient at lower vapor quality. Finally, the heat transfer coefficient was higher for the square microchannel because corners in the square microchannel acted as effective active nucleation sites.  相似文献   

17.
The hydrodynamic and thermal characteristics of fractal-shaped microchannel network heat sinks are investigated numerically by solving three-dimensional N–S equations and energy equation, taking into consideration the conjugate heat transfer in microchannel walls. It is found that due to the structural limitation of right-angled fractal-shaped microchannel network, hotspots may appear on the bottom wall of the heat sink where the microchannels are sparsely distributed. With slight modifications in the fractal-shaped structure of microchannels network, great improvements on hydrodynamic and thermal performance of heat sink can be achieved. A comparison of the performance of modified fractal-shaped microchannel network heat sink with parallel microchannels heat sink is also conducted numerically based on the same heat sink dimensions. It is found that the modified fractal-shaped microchannel network is much better in terms of thermal resistance and temperature uniformity under the conditions of the same pressure drop or pumping power. Therefore, the modified fractal-shaped microchannel network heat sink appears promising to be used for microelectronic cooling in the future.  相似文献   

18.
Yuying Yan  Yingqing Zu 《传热工程》2013,34(13-14):1182-1190
This paper reports the results of numerical study on bubbles deformation, flow, and coalescence under pseudo-nucleate boiling conditions in horizontal mini-/microchannels. The numerical simulation, which is based on the multiphase model of volume of fluid method, aims to study the corresponding flow behaviors of nucleate bubbles generated from the tube walls in mini-/microchannels so as to understand the effect of confined surfaces/walls on nucleate bubbles and heat transfer. Under the pseudo- or quasi-nucleate boiling condition, superheated small vapor bubbles are injected at the wall to ensure that the bubbles generation is under a similar condition of real nucleation. The numerical study examined the fluid mechanics of bubble motion with heat transfer, but the mass transfer across the bubble–liquid interface is not simulated in the present work.  相似文献   

19.
Flow boiling in arrays of parallel microchannels is investigated using a silicon test piece with imbedded discrete heat sources and integrated local temperature sensors. The microchannels considered range in width from 102 μm to 997 μm, with the channel depth being nominally 400 μm in each case. Each test piece has a footprint of 1.27 cm by 1.27 cm with parallel microchannels diced into one surface. Twenty five microsensors integrated into the microchannel heat sinks allow for accurate local temperature measurements over the entire test piece. The experiments are conducted with deionized water which enters the channels in a purely liquid state. Results are presented in terms of temperatures and pressure drop as a function of imposed heat flux. The experimental results allow a critical assessment of the applicability of existing models and correlations in predicting the heat transfer rates and pressure drops in microchannel arrays, and lead to the development of models for predicting the two-phase pressure drop and saturated boiling heat transfer coefficient.  相似文献   

20.
The present study explores experimentally the two-phase flow instability in a microchannel heat sink with 15 parallel microchannels. The hydraulic diameter for each channel is 86.3 μm. Flow boiling in the present microchannel heat sink demonstrates significantly different two-phase flow patterns under stable or unstable conditions. For the stable cases bubble nucleation, slug flow and slug or annular flows appear sequentially in the flow direction. On the other hand, forward or reversed slug/annular flows appear alternatively in every channel. Moreover, the length of bubble slug may oscillate for unstable cases with reversed flow demonstrating the suppressing effect of pressure field for bubble growth. It is found that the magnitude of pressure drop oscillations may be used as an index for the appearance of reversed flow. A stability map on the plane of inlet subcooling number versus phase change number is established. A very narrow region for stable two-phase flow or mild two-phase flow oscillations is present near the line of zero exit quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号