共查询到20条相似文献,搜索用时 0 毫秒
1.
Tassos G. Karayiannis Dereje Shiferaw David B. R. Kenning Vishwas V. Wadekar 《传热工程》2013,34(4):257-275
An overview of the recent developments in the study of flow patterns and boiling heat transfer in small to micro diameter tubes is presented. The latest results of a long-term study of flow boiling of R134a in five vertical stainless-steel tubes of internal diameter 4.26, 2.88, 2.01, 1.1, and 0.52 mm are then discussed. During these experiments, the mass flux was varied from 100 to 700 kg/m2s and the heat flux from as low as 1.6 to 135 kW/m2. Five different pressures were studied, namely, 6, 8, 10, 12, and 14 bar. The flow regimes were observed at a glass section located directly at the exit of the heated test section. The range of diameters was chosen to investigate thresholds for macro, small, or micro tube characteristics. The heat transfer coefficients in tubes ranging from 4.26 mm down to 1.1 mm increased with heat flux and system pressure, but did not change with vapor quality for low quality values. At higher quality, the heat transfer coefficients decreased with increasing quality, indicating local transient dry-out, instead of increasing as expected in macro tubes. There was no significant difference between the characteristics and magnitude of the heat transfer coefficients in the 4.26 mm and 2.88 mm tubes but the coefficients in the 2.01 and 1.1 mm tubes were higher. Confined bubble flow was first observed in the 2.01 mm tube, which suggests that this size might be considered as a critical diameter to distinguish small from macro tubes. Further differences have now been observed in the 0.52 mm tube: A transitional wavy flow appeared over a significant range of quality/heat flux and dispersed flow was not observed. The heat transfer characteristics were also different from those in the larger tubes. The data fell into two groups that exhibited different influences of heat flux below and above a heat flux threshold. These differences, in both flow patterns and heat transfer, indicate a possible second change from small to micro behavior at diameters less than 1 mm for R134a. 相似文献
2.
本文通过实验的方法对烧结的多孔微通道和铜基微通道的沸腾换热性能和流动不稳定进行研究.实验工质选用去离子水,采用的铜粉粒径分别为30μm、50μm、90 μm,烧结底厚为200 μm和400 μm.采取控制变量的方式,研究改变入口温度、铜粉粒径大小、入口流量对多孔微通道和铜基微通道换热性能的影响.研究表明:多孔微通道最优的厚度粒径比在2~5之间,在此区间的多孔微通道可以提高沸腾传热的性能.其中厚度粒径比为2和4的多孔微通道的最大换热系数是铜基微通道的换热系数的5倍.多孔微通道相对于铜基微通道有更好的换热能力,有着较低的壁面温度. 相似文献
3.
INTaoDUCTIONReclitlydry-troeeVaPoratorofairconditioningmaChineandreffigeratorhavebeendevefoPinginthedirectionofusingsmalldiamtertube.TheHITACHICo.conductedaserlesofeVaPoratfonhe8ttransferexperimeats,usingthethinwallcoppertubesofinnerdiamter9.52nun,8mm,7mmand5nunre-spectivelytheworkingmediawasHCFC22(qualityx=o.6)I'].TheresulthasshoWnthatheeVaPo-rationheattransfercoefficielltsweresghcatlyincreasedwiththedecreasingoftubediameter.EVaThorationheattransfercoefficientofa5.onuninnerdiare… 相似文献
4.
多孔表面管沸腾传热试验研究 总被引:6,自引:0,他引:6
针对烧制成多孔表面管,进行了传热性能研究,试验表明:多孔管可以显著地强化多孔侧沸腾传热,民同规格光滑管传热性能试验对比,其沸腾给热系数比光滑管提高5-6倍。 相似文献
5.
An investigation on flow boiling heat transfer and pressure drop of HFC-134a inside a vertical helically coiled concentric tube-in-tube heat exchanger has been experimentally carried out. The test section is a six-turn helically coiled tube with 5.786-m length, in which refrigerant HFC-134a flowing inside the inner tube is heated by the water flowing in the annulus. The diameter and the pitch of the coil are 305 mm and 45 mm, respectively. The outer diameter of the inner tube and its thickness are respectively 9.52 and 0.62 mm. The inner diameter of the outer tube is 29 mm. The average vapor qualities in test section were varied from 0.1 to 0.8. The tests were conducted with three different mass velocities of 112, 132, and 152 kg/m2-s. Analysis of obtained data showed that increasing of both the vapor qualities and the mass fluxes leads to higher heat transfer coefficients and pressure drops. Also, it was observed that the heat transfer coefficient is enhanced and also the pressure drop is increased when a helically coiled tube is used instead of a straight tube. Based on the present experimental results, a correlation was developed to predict the flow boiling heat transfer coefficient in vertical helically coiled tubes. 相似文献
6.
There is a growing use of CO2 refrigeration to achieve low temperatures, particularly in the food industry; however, very limited information is available in the open literature on its boiling heat transfer characteristics below –30°C. This paper investigates experimentally the flow boiling heat transfer of CO2 at low temperatures down to –40°C. The experimental data were collected from a novel experimental rig, specifically designed to achieve low temperatures, using a 4.5 m long horizontal stainless steel tube of 4.57 mm inner diameter. The effects of heat and mass fluxes and saturation temperature on the flow boiling heat transfer coefficient are also analyzed. Furthermore, this paper highlights the limitations of existing empirical correlations by comparing their predictions with the experimental boiling heat transfer coefficients. It is expected that the data presented in this study would be beneficial to industry and designers of compact heat exchangers for CO2 at low temperatures. 相似文献
7.
The present study investigated the effect of smooth tube flattening on heat transfer enhancement in an evaporator. The tubes with internal diameter of 8.7 mm were flattened into an oblong shape with different inside heights. The test setup was basically a vapor compression refrigeration system equipped with all necessary measuring instruments. Refrigerant R-134a flowing inside the tube was heated by an electrical coil heater wrapped around it. The ranges of mass velocities were from 74 to 106 kg/m2-s and vapor quality varied from 25% to 95%. Analysis of the collected data indicated that the heat transfer coefficient elevates by increasing the mass velocity and vapor quality in flattened tubes just like the round tube. The flow boiling heat transfer coefficient increases when the flattened tube is used instead of the round tube. The highest heat transfer coefficient enhancement of 172% was achieved for the tube with the lowest inside height at mass velocity of 106 kg/m2-s and vapor quality of 85%. Finally, based on the present experimental results, a correlation was developed to predict the heat transfer coefficient in flattened tubes. 相似文献
8.
ABSTRACTThis paper presents an experimental study on R1234yf flow boiling inside a mini microfin tube with an inner diameter at the fin tip of 2.4 mm. R1234yf is a new refrigerant with an extremely low global warming potential (GWP <1), proposed as a possible substitute for the common R134a, whose GWP is about 1300. The mass flux was varied between 375 and 940 kg m?2 s?1, heat flux from 10 to 50 kW m?2, and vapor quality from 0.1 to 1. The saturation temperature at the inlet of the test section was kept constant and equal to 30°C. The wide range of operative test conditions permitted highlighting the effects of mass flux, heat flux, and vapor quality on the thermal and hydraulic behavior during the flow boiling mechanism inside such a mini microfin tube. The results show that at low heat flux the phase-change process is mainly controlled by two-phase forced convection, and at high heat flux by nucleate boiling. The two-phase frictional pressure drop increases with increasing both mass velocity and vapor quality. Dry-out was observed only at the highest heat flux, at vapor qualities of around 0.94–0.95. 相似文献
9.
Abhilas Swain 《传热工程》2013,34(5):443-455
The applicability of the artificial intelligence technique called ANFIS (for adaptive neuro fuzzy inference system) to model the flow boiling heat transfer over a tube bundle is studied in this paper. The ANFIS model is trained and validated with the experimental data from literature. The heat flux, mass flux, and row height are taken as input and the flow boiling heat transfer coefficient as output. The developed model performance is evaluated in terms of performance parameters such as root mean square error, mean square error, correlation coefficient, variance accounted for, and computational time. The preceding parameters of the model are then determined for different combinations of type and number of membership functions. The model is found to predict experimental heat transfer coefficient within an error of ±5%. The developed model is also compared with the artificial neural network model and is found to be better in predicting the flow boiling heat transfer coefficient. The developed model is further used to observe the variation of heat transfer coefficient of the individual rows and bundle for intermediate value of parameters such as heat flux and mass flux that are not included in the analysis of experimental data. The analysis is able to provide complete information about variation of heat transfer coefficient of individual rows and the bundle with respect to heat flux and mass flux. 相似文献
10.
水平三维内微肋管在局部蒸干区的沸腾换热及其关联式 总被引:3,自引:1,他引:2
为了得到不同流型下的换热性能 ,以 R1 3 4a为实验工质在一种水平三维内微肋管内进行了流动沸腾换热实验研究 ,通过可视化等措施对得到的主要流型及其转换曲线表示在 G-x图上。对局部蒸干区的沸腾换热特点进行了讨论 ,并根据此区域换热的特点 ,沿周向管壁分成两个部分 ,即 :蒸干部分和非蒸干部分。对于非蒸干部分又分为淹没微肋的底部液体 ,且认为同环状流换热机理相同 ,而另一部分认为液休带领在沟槽中 ,从而得到了此区域的换热实验关联式 ,此换热关联式与实验值的最大偏差在± 1 6%以内 相似文献
11.
This article presents a study of flow boiling of R123 in two small-diameter silver tubes with inner diameters of 1.15 mm and 2.3 mm. The experiments have been accomplished for a wide range of quality variation (0.01–0.9), mass flow rate (650–3000 kg/m2s), and heat fluxes (40–80 kW/m2). The saturation temperature ranged from 30 to 70°C. In the experiments a peculiar distribution of heat transfer coefficient leading to development of two maxima in its distribution with respect to quality has been observed. Such behavior was seen in both sizes of tubes. 相似文献
12.
13.
采用三维数值模拟方法,研究了麻面管的结构参数对流体流动和换热特性的影响,运用多元线性回归的方法,分别拟合出换热与阻力的准则关联式。结果表明:管内壁面的周期性凸包对近壁处边界层有较好的扰动作用,改善了流体速度场与温度场的协同性,实现了强化换热;相比于光管,麻面管的努塞尔数Nu增幅为16%~40%,摩擦阻力系数f增幅为15%~53%,综合换热性能指标C_(PEC)范围在1.05~2.5,与光管换热器相比,当换热量与流体功耗相同时,麻面管换热器的相对换热面积可减小10%~35%,当换热面积与流体功耗相同时,相对换热量可提高1.08~1.36倍,极大地提升了换热器的经济性。 相似文献
14.
The effect of flow instabilities on flow boiling heat transfer in microchannels is investigated using water as the working fluid. The experimental test section has six parallel rectangular microchannels, each having a cross-sectional area of 1054 × 197 microns. Flow restrictors are introduced at the inlet of each microchannel to stabilize the flow boiling process and avoid the backflow phenomena. The mass flow rate, inlet temperature of water, and the electric current supplied to the resistive cartridge heater are controlled to provide quantitative heat transfer information. The results are compared with the unrestricted flow configuration. 相似文献
15.
《传热工程》2012,33(3):288-301
AbstractWettability plays an important role during flow boiling inside micro and mini channels. The present work focuses on the flow boiling heat transfer characteristics inside copper minitube (inner diameter of 3?mm) coated internally to render the inside surface nearly hydrophobic. Electroless Galvanic Deposition technique is employed for hydrophobic coating inside the copper tube. Both single phase heat transfer and two-phase flow boiling heat transfer and pressure drop characteristics were investigated in regular and internally coated hydrophobic copper minitubes. The experiments were performed with deionized water as a working fluid and the mass flux was varied from 100 to 650?kg/m2s. The two-phase heat transfer characteristics was observed to be both functions of mass flux as well as heat flux. The two phase heat transfer has been observed to be augmented due to the wettability within the tubes. The two-phase pressure drop has also been observed to increase when compared to the regular, uncoated tube; however, the proportional increment is lower than the augmentation achieved in two-phase heat transfer. The enhanced heat transfer effects observed have been explained on the basis of wetting physics. 相似文献
16.
In this study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a low global warming potential refrigerant R32 flowing in a horizontal copper circular tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small-diameter tubes or minichannels for air conditioning systems. Axially local heat transfer coefficients were measured in the range of mass fluxes from 30 to 400 kg/(m2·s), qualities from 0.05 to 1.0, and heat fluxes from 2 to 24 kW/m2 at the saturation temperature of 10°C. Pressure drops were also measured in the rage of mass fluxes from 30 to 400 kg/(m2·s) and qualities from 0.05 to 0.9 at the saturation temperature of 10°C under adiabatic condition. In addition, two-phase flow patterns were observed through a sight glass fixed at the tube exit with a digital camera. The characteristics of boiling heat transfer and pressure drop were clarified based on the measurements and the comparison with data of R410A obtained previously. Also, measured heat transfer coefficients were compared with two existing correlations. 相似文献
17.
The present article is aimed at evaluating six typical flow boiling heat transfer correlations selected from the open literature with experimental results. The selected correlations are correlations of Chen, Shah, Gungor and Winterton, Liu and Winterton, Klimenko, and Kandlikar. Experiments of upward flow boiling heat transfer with kerosene in a vertical smooth tube were conducted. The test tube has a length of 2.5 m and its outer and inner diameters are 19 mm and 15 mm, respectively. The experiments were performed at an absolute atmospheric pressure of 3. The input heat flux ranged from 28.5 to 93.75 kW/m² and the mass fluxes were selected at 410, 610, and 810 kg/m² s, respectively. The experimental flow boiling heat transfer coefficients were compared with flow boiling heat transfer coefficients calculated with the six typical correlations. By comparison, the most suitable correlations are recommended for the calculation of flow boiling heat transfer coefficients with kerosene in a smooth tube. 相似文献
18.
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m?2 s?1, heat flux from 0 to 55 kW m?2, exit saturation temperatures of 31 and 41°C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m?1 and from 1 to 7 kW m?2 K?1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%. 相似文献
19.
近年来,非共沸混合制冷剂作为工质改善热泵和制冷设备工作效率和性能的潜力引起了广泛的重视。本文评述了非共沸混合制冷剂水平管内流动沸腾换热研究的主要问题,着重于讨论换热的计算,并提出了一些有益建议。 相似文献
20.
The boiling heat transfer and two-phase pressure drop of water in a microscale channel were experimentally investigated. The tested horizontal rectangular microchannel had a hydraulic diameter of 100 μ m and length of 40 mm. A series of microheaters provided heat energy to the working fluid, which made it possible to control and measure the local thermal conditions in the direction of the flow. Both the microchannel and microheaters were fabricated using a micro-electro-mechanical systems (MEMS) technique. Flow patterns were obtained from real-time flow visualizations made during the flow boiling experiments. Tests were performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes from 200 to 500 kW/m2. The effects of the mass flux and vapor quality on the local flow boiling heat transfer coefficient and two-phase frictional pressure gradient were studied. The evaluated experimental data were compared with existing correlations. The experimental heat transfer coefficients were nearly independent of the mass flux and vapor quality. Most of the existing correlations did not provide reliable heat transfer coefficient predictions for different vapor quality values, nor could they predict the two-phase frictional pressure gradient except under some limited conditions. 相似文献