首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
对镁及其合金的基本特点作了详细的介绍,总结概括了镁合金塑性变形过程中的滑移与孪生两种变形机制,阐述了镁合金的塑性变形是滑移与孪生两种变形机制相互竞争的结果,并对镁合金在塑性变形中孪生与退孪生现象做出了解释。简述了经典的晶体塑性模型及理论,如泰勒(Taylor)模型、萨克斯(Sachs)模型、粘塑性自洽模型(VPSC)以及晶体塑性有限元模型(CPFE)。分析国内外关于镁合金晶体塑性理论研究,主要包括塑性变形力学性能的研究、晶体塑性变形过程中各种滑移与孪生机制的开动及织构演化的研究,并利用VPSC和CPFE进行模拟,在宏观、微观、介观尺度上分析镁合金塑性变形过程中各变形机制的影响。  相似文献   

2.
镁合金塑性变形中孪生的研究   总被引:9,自引:0,他引:9  
介绍了镁合金变形过程中孪生的晶体学、位错机理以及几何位向学;探讨了孪晶的形核、长大与演变机制;分析了孪生过程对塑性变形的作用;论述了影响孪生的几种基本因素,包括晶粒取向、变形温度、变形速度、晶粒尺寸、预变形.研究结果表明,镁合金塑性变形过程中孪生变形的作用在于,通过孪生过程改变晶粒取向或通过孪晶间或孪晶与滑移之间的相互作用,诱发新的滑移和孪生;孪晶也可抑制裂纹的产生和扩展,从而提高变形镁合金的室温塑性.  相似文献   

3.
介绍了镁合金在单轴压缩、单轴拉伸、轧制和挤压条件下塑性变形的力学行为及微观组织结构演变规律。简述了镁合金中二次拉伸孪生现象以及各种变形条件下孪生与孪生变体类型的选择规律。基于对镁合金位错滑移、机械孪生及动态回复与再结晶行为的认识,对镁合金力学行为的各向异性、轧制与挤压成型能力的影响规律进行了探讨,强调了初始织构对变形机制、动态再结晶及成型能力的重要影响。最后讨论了析出强化镁合金塑性变形与强韧化机理。  相似文献   

4.
镁合金的塑性变形机制和孪生变形研究   总被引:4,自引:1,他引:3  
概述了镁合金的塑性变形机制,介绍了镁合金的主要孪生系及其表征技术,详细分析了变形温度、变形速率、受力方向和晶粒尺寸等对镁合金孪生变形的影响,讨论了孪生变形对镁合金塑性变形、动态再结晶、力学性能与断裂的影响。孪生通常发生在粗大晶粒中,晶粒细化可以激活镁合金中的非基面滑移,抑制孪生变形和降低镁合金的各向异性,指出细晶镁合金的研制和工业化生产是变形镁合金发展的重要方向。  相似文献   

5.
本文研究了AZ31镁合金挤压板材热处理后不同晶粒尺寸下各角度的拉伸性能与变形行为,通过分析拉伸曲线和变形后的位错类型来确定不同角度下的拉伸变形机制。结果发现:沿板材法向0°,22.5°,45°,67.5°,90°拉伸后的屈服强度与晶粒尺寸符合Hall-Petch(H-P)关系,但H-P参数值各不相同,0°具有最高的σ_0和最低的K_y,其变形机制由拉伸孪晶为主导与棱柱面a滑移共同作用;45°拉伸时具有最低的σ_0和最高的K_y,变形机制为基面a滑移主导;90°下的H-P参数值与0°相接近,c位错及a+c位错开始出现,棱柱面滑移与拉伸孪晶共同主导变形机制,孪晶可以协调变形改变晶粒取向和促进非基面滑移的产生。  相似文献   

6.
轻质镁合金在航空航天、交通运输等领域的轻量化方面具有广阔的应用前景。孪生变形是六方结构镁合金室温下重要的变形机制,最近大量研究报道了利用预变形孪晶界面调控镁合金组织、织构和力学性能。系统综述了利用拉伸孪晶组织强化镁合金的研究进展。首先介绍了镁合金的主要变形机制及拉伸孪生的特点,然后系统总结了利用拉伸孪晶强化镁合金的研究进展,重点阐述了孪晶强化特点及主要准则,包括利用单一孪晶结构强化镁合金的特点及不足、利用复合孪晶结构实现三维强化的思路、复合孪晶实现三维强化的机制及复合孪晶结构的设计准则。最后展望了利用孪晶组织强化镁合金的发展方向。  相似文献   

7.
基于分子动力学方法的计算材料科学是研究微纳米尺度变形机理的重要途径,有助于理清镁合金不同塑性变形机制间的详细竞争关系。本文概述了镁合金中滑移、孪生和晶界滑移变形机制的作用机理;简要介绍了分子动力学基本原理和适用于密排六方结构金属的常用势函数;详细阐述了基于分子动力学方法镁合金塑性变形机制的研究进展。在综述目前研究存在问题的基础上,指出开发适用于镁合金多元体系的高精度势函数以及如何实现多个尺度的衔接等方面是今后研究的重要方向。  相似文献   

8.
进行变形速率可控的单向拉伸试验,研究了变形织构与滑移和孪生等协调变形机理对AZ31镁合金综合性能的影响。结果表明:在沿挤压方向拉伸过程中,变形织构使{0002}晶面Schmid因子较低,基面滑移难以开动,屈服强度高。在沿45°拉伸过程中,变形织构使柱面取向晶粒处于发生{0002}滑移的最佳位置,基面取向晶粒的棱柱面滑移也处于最佳位置,屈服强度低而延伸率高。沿横向拉伸的力学性能主要受孪晶影响,由于大量孪晶诱发裂纹,延伸率最低。试样在45°和横向拉伸时产生的大量拉伸孪晶,是出现{0002}双峰织构的诱因。  相似文献   

9.
以国产蒸汽发生器传热管用GH690合金为研究对象,通过评价其断裂韧性及拉伸特性,结合光学显微镜、扫描电镜和透射电镜分析,研究了合金由室温-623K的力学性能.研究结果表明,室温下GH690合金低的层错能,易生成形变孪晶,使得合金在孪生的协调下塑性变形能力提高,同时孪晶促进裂纹扩展转向,使合金在断裂过程中吸收更多的能量,维持合金高的断裂韧性.随着温度的升高,合金的层错能增加,导致形变孪晶生成困难,合金应力集中程度加剧,裂纹从而平直扩展,合金的断裂韧性降低.由于合金的室温层错能较低,合金在拉伸时能够通过孪生协调变形,同时生成的孪晶阻碍了位错的滑移而提高了合金的强度和塑性.随着形变温度的升高,合金通过孪生协调变形的能力降低,导至合金的变形机制由孪生转变为滑移,滑移产生的加工硬化效应小于孪生,故合金的强度和延伸率随之降低.  相似文献   

10.
采用连续变断面循环挤压技术(CVCE)对AZ31镁合金进行循环挤压。采用光学显微镜、电子拉伸机等设备,分析变形前及不同循环道次后AZ31镁合金的微观组织和力学性能。结果表明:AZ31镁合金经10循环CVCE后,平均晶粒尺寸由变形前25.3μm有效细化到5.5μm;伸长率提高到34.3%,抗拉强度下降到200MPa。由于晶粒细化效应,导致α相主要变形机制由1循环的孪生变为随后道次的位错滑移。抗拉强度的降低与挤压后(0001)晶面取向分布的分散性有关;伸长率的增大与晶粒细化和滑移面的激活有关。  相似文献   

11.
为探讨AZ31B挤压态镁合金棒材沿径向取样的循环变形特征,开展了0.75%,1.0%,2.0%和4.0%应变幅下应变控制的非对称压-压循环变形实验。结果表明:在小应变幅(0.75%,1.0%)下,循环变形的滞回曲线表现出较好的对称性;在大应变幅(2.0%,4.0%)下,滞回曲线对称性差,且在滞回曲线上出现拐点;随着循环周次增加,塑性应变幅呈现下降趋势,材料均表现出循环硬化行为,在小应变幅下循环拉伸阶段对材料硬化率远大于压缩阶段的硬化率,而在大应变幅下这种区别并不明显。分析表明,沿径向取向的〈1120〉丝织构镁合金,小应变幅下位错滑移在整个寿命周期内作用更大;大应变幅下,随着塑性变形的增加,循环过程中变形机制发生演化,较低临界剪切应力(critical resolved shear stress,CRSS)的基面位错和拉伸孪生不能完全满足变形要求,较高CRSS滑移系启动及残余孪晶使得滞回曲线出现拐点;循环变形过程中不完全的孪生-去孪生过程使基体中存在大量残余孪晶,影响了循环变形过程的硬化率,同时降低了疲劳寿命。  相似文献   

12.
异步轧制AZ31镁合金板材的超塑性工艺及变形机制   总被引:1,自引:0,他引:1  
经过异步轧制工艺获得AZ31镁合金薄板。在300~450℃范围内,分别通过5×10-3,1×10-3s-1和5×10-4s-1不同应变速率进行高温拉伸实验研究其超塑性变形行为,计算应变速率敏感指数m值、超塑性变形激活能Q及门槛应力σ0值。通过EBSD分析和扫描电镜观察拉伸断裂后的断口形貌,分析AZ31镁合金的超塑性变形机制。结果表明:AZ31镁合金的塑性变形能力随着变形温度的升高及应变速率的降低而增强。当拉伸温度为400℃、m=0.72、应变速率为5×10-4s-1时,AZ31具有良好的超塑性,伸长率最大为206%。温度为400℃时,异步轧制AZ31镁合金的超塑性变形是以晶格扩散控制的晶界滑移和基面滑移共同完成的。  相似文献   

13.
对GH3535合金进行不同变形量的拉伸,研究了冷变形对GH3535合金力学性能的影响,用OM、TEM对冷变形后的组织结构进行观察并结合真应力-真应变曲线分析了GH3535合金加工硬化的变形机制。结果表明,GH3535合金具有显著的加工硬化特性,冷变形使其强度和硬度提高,但是塑性降低;随着变形量的增大晶粒沿着变形方向伸长,孪晶变多且更粗大。GH3535合金的加工硬化规律遵循Ludwigson模型,随着冷变形量的增大GH3535合金的加工硬化指数降低,变形机制由单滑移和孪生逐渐变成交滑移和孪生。当变形量小于30%时加工硬化主要是位错的长程应力场和孪晶引起的,当变形量大于30%时主要是位错的短程应力场和形变孪晶引起的。  相似文献   

14.
韩松  曾嵩  嵇文清  朱荣 《材料导报》2012,26(12):36-38,45
通过对Mg-12Gd-3Y-0.5Zr合金进行单向拉伸试验,检验晶粒尺寸、温度和应变率对合金力学性能的影响。通过退火处理可以获得不同晶粒尺寸((9.63±0.69)~(94.24±2.41)μm)的试样,拉伸温度分别为20℃、-25℃和-50℃。当温度足够低时,塑性变形由滑移主导的变形方式向孪生主导过渡;同样的情况可在晶粒尺寸变大时发生。变形机制的转变导致Hall-Petch关系中斜率的变化。采用Zener-Hollomon参量来描述温度、应变率对孪生的综合影响。实验结果表明,随着Z参量的变大,孪生发生率增大;当Z值足够大时,变形机制发生转变。  相似文献   

15.
AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究   总被引:1,自引:0,他引:1  
利用电子背散射衍射(EBSD)技术,原位跟踪AZ31镁合金轧制板材室温下沿轧向拉伸时的晶粒取向变化。对变形过程的滑移系和孪晶启动机进行分析。结果表明:变形过程主要由〈a〉基面和柱面滑移系开动而实现,晶粒取向无明显变化,大量〈a〉位错滑移的产生,使得变形后小角度晶界增加明显。晶粒中拉伸孪晶是试样在拉伸变形过程中产生的,而非在试样拉伸后的卸载过程中产生。  相似文献   

16.
晶粒细化可以有效改善镁合金的力学性能.基于此,以Mg-1.5Zn-0.2Ca合金作为研究对象,通过中低温挤压变形工艺对Mg-1.5Zn-0.2Ca合金组织进行调控,进而对其变形后的组织及性能进行分析.结果表明:随着挤压温度降低,Mg-1.5Zn-0.2Ca合金的塑性变形机制发生转变,变形后的晶粒尺寸逐渐减小,综合力学性能增强.280℃挤压变形时,合金以基面滑移及孪生协调变形为主,动态再结晶后的平均晶粒尺寸约为5.3μm,此时合金的屈服强度为95 MPa,抗拉强度为186 MPa,延伸率为22%.  相似文献   

17.
考虑拉伸刚化效应是精确计算纤维增强树脂复合材料(FRP)筋/混凝土构件变形和裂缝的基础。提出了考虑拉伸刚化效应的FRP筋/混凝土拉伸构件变形计算的解析方法。首先,对修正Eligehausen黏结滑移模型(修正BPE模型)进行简化提出四线性黏结-滑移模型。根据该模型推导了拉伸构件在不同拉伸荷载阶段的FRP筋、混凝土应力和变形及黏结力和滑移量的分布表达式。结合混凝土开裂判别方法,提出了FRP筋/混凝土拉伸构件的全过程变形计算方法。通过与已有文献试验结果对比验证了本文方法的准确性。对影响拉伸刚化的一些参数进行了敏感性分析。结果表明,混凝土强度和配筋率对拉伸刚化效应影响不大,FRP筋弹性模量是影响拉伸刚化效应的主要因素。   相似文献   

18.
采用准静态试验机和分离式霍普金森杆(SHPB)对稀土镁合金进行压缩实验,并利用金相显微镜和扫描电镜进行显微分析,研究动态压缩下的力学性能,并探讨塑性变形和断裂的机制。结果表明:稀土镁合金的动态压缩应力-应变曲线对应变速率有一定的敏感性,塑性变形方式为滑移和孪生共同作用,断裂机制表现出对应变速率的敏感性。  相似文献   

19.
为得到高强度和高塑性的镁基复合材料,通过高能超声分散法和金属型重力铸造工艺制备了SiC纳米颗粒分散均匀的SiCp/AZ91D镁基纳米复合材料,并进行T4固溶热处理和室温拉伸。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对试样拉伸后的显微组织和塑性变形机理进行观察与研究。结果表明:T4态SiCp/AZ91D镁基纳米复合材料室温下抗拉强度达到296 MPa,伸长率达到17.3%。经室温拉伸变形后复合材料基体微观组织中出现了大量的孪晶和滑移,孪生和滑移是复合材料塑形变形的主要机制。在室温拉伸过程中,α-Mg基体中SiC纳米颗粒周围形成高应变场,高应变场内形成大量位错和堆垛层错,这些位错和堆垛层错在拉伸应变的作用下演变成大量的滑移带和孪晶,这是SiCp/AZ91D镁基纳米复合材料在室温下具有高塑性的微观塑性变形机理。  相似文献   

20.
本研究测试了高锰Hadfield钢室温下在大应变速率(分别为6×10~(-3)s~(-1)、6×10~(-4)s~(-1)、3×10~(-5)s~(-1)和6×10~(-6)s~(-1))范围内的单向拉伸变形的力学响应行为,分析了合金的变形行为及裂纹萌生与扩展规律。结果表明:在不同应变速率下均存在动态应变时效现象,且延伸率具有正的应变速率敏感性。拉伸变形后,奥氏体晶粒内产生了大量位错和层错,以及细小且相互平行的形变孪晶。应变硬化率随真应变的增加依次表现为"减小—增大—减小"三个演变阶段。其中,第二阶段的增大现象是形变孪晶的急剧增加而形成孪生硬化所致。垂直于拉伸变形方向分布的高密度滑移带是裂纹萌生的主要区域。裂纹扩展以沿垂直拉伸方向的穿晶形式为主,结合沿孪晶方向进行。高锰Hadfield钢的主要变形机制是滑移与孪生的相互竞争。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号