首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
硅基防热材料是高超声速飞行器防热系统用重要材料之一,但由于硅基防热材料在高温条件下存在着复杂的物理化学变化,使得高温热导率的获取变得困难,这已成为飞行器防热系统精细化设计的主要制约瓶颈。基于热导率辨识方法,设计了一种能够实现硅基防热材料高温热导率测量的试验测量装置,对硅基防热材料在常温~800℃热导率进行了测量,并将测得的热导率外推应用到其他试验状态。结果表明,测得的硅基防热材料高温热导率合理可靠,具有很高的工程精度。该试验测量装置可实现不同温度下热导率的同步测量,测量成本低,效率高,这对其他防热材料的高温热导率测量具有重要的参考价值。  相似文献   

2.
The transient plane source (TPS) technique was employed to measure experimentally the thermal conductivity of three selected steel samples. Measured values of thermal conductivities are critically analysed, taking into account factors such as the composition and the nature of the alloying elements. An effort is made to determine the temperature dependence of thermal conductivity of these samples from room temperature to 300°C. Results of the present measurements are also discussed in the light of the values of thermal conductivity on equivalent steels measured by other workers.  相似文献   

3.
Because of the high cost of measuring the specific heat capacity and the difficulty in measuring the thermal conductivity of prismatic lithium-ion batteries, two devices with a sandwiched core of the sample-electric heating film-sample were designed and developed to measure the thermal properties of the batteries based on Fourier's thermal equation. Similar to electrical circuit modeling, two equivalent thermal circuits were constructed to model the heat loss of the self-made devices, one thermal-resistance steady circuit for the purpose of measuring the thermal conductivity, the other thermal-resistance-capacitance dynamic circuit for the purpose of measuring the specific heat capacity. Using the analytic method and recursive least squares, the lumped model parameters of these two thermal circuits were extracted to estimate the heat loss and correct the measured values of the self-made devices. Compared to the standard values of the reference samples of the glass and steel plates, the measured values were corrected to improve the measurement accuracies beyond 95% through steady thermal-circuit modeling. Compared to the measured value of the specific heat capacity of the battery sample at 50% state of charge using the calorimeter, the measured value using the self-made device was corrected in order to elevate the measurement accuracy by about 90% through dynamic thermal-circuit modeling. As verified through the experiments, it was reliable, convenient, and low cost for the proposed methodology to measure the thermal properties of prismatic lithium-ion batteries.  相似文献   

4.
Heat transfer has considerable applications in different industries such as designing of heat exchanger, nuclear reactor cooling, control system for spacecraft, and designing of microelectronics cooling. As the surfaces of two metals contact each other, this issue becomes so crucial. Thermal contact resistance (TCR) is one of the key physical parameters in heat transfer of mentioned surfaces. Measuring the experimental value of TCR in laboratory is highly expensive and difficult. As an alternative, numerical modeling methods could be engaged. In this study, inverse problem method solution is utilized as a proper method for estimation of TCR value. In this order, three different configurations (flat-flat, flat-cylinder, and cylinder-cylinder) were utilized in two steady and unsteady state conditions to predict the value of TCR. A comparison between the measured values and obtained values from the simulation show the errors for flat-flat, flat-cylinder, and cylinder-cylinder configuration after 10 min from starting the experiment are 4.6074%, 0.1662%, and 0.5622%, respectively. And in steady-state condition, the corresponding errors are 6.06e-3%, 1.506%, and 0.846%, respectively. In conclusion, the final results establish the fact that the inverse problem method solution can predict TCR values between contacting surfaces.  相似文献   

5.
Simultaneous measurements of thermal conductivity and thermal diffusivity of composite red-sand bricks, glycerine and mercury have been made at room temperature by the recently developed transient plane source (TPS) technique. This paper describes, in brief, the theory and the experimental conditions for the simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and metals. The source of heat is a hot disc made out of bifilar spirals. The disc also serves as a sensor of temperature increase in the sample. The measured values of the thermal conductivity and thermal diffusivity of these samples are in agreement with the values reported earlier using other methods. The advantage of the TPS technique is the simplicity of the equipment, simultaneous information on thermal conductivity and thermal diffusivity, and also the applicability of the technique to insulators, fluids and metals.  相似文献   

6.
The quest to improve the thermoelectric figure of merit has mainly followed the roadmap of lowering the thermal conductivity while keeping unaltered the power factor of the material. Ideally an electron-crystal phonon-glass system is desired. In this work, we report an extraordinary reduction of the cross-plane thermal conductivity in crystalline (TiNiSn):(HfNiSn) half-Heusler superlattices (SLs). We create SLs with thermal conductivities below the effective amorphous limit, which is kept in a large temperature range (120–300 K). We measured thermal conductivity at room temperature values as low as 0.75 W m?1 K?1, the lowest thermal conductivity value reported so far for half-Heusler compounds. By changing the deposition conditions, we also demonstrate that the thermal conductivity is highly impacted by the way the single segments of the SL grow. These findings show a huge potential for thermoelectric generators where an extraordinary reduction of the thermal conductivity is required but without losing the crystal quality of the system  相似文献   

7.
The development of ceramic-ceramic composite nuclear fuels benefits from thermal modeling by providing an understanding on how fabrication variables, such as phase fractions, densities, and geometry, will determine effective thermal conductivity. Finite element method (FEM) two and three dimensional programs were used to predict the thermal conductivity of composite UO2-BeO materials. The FEM modeling results were compared to the measured UO2-BeO fuel sample thermal conductivities. The comparison showed that the thermal modeling was in good agreement with the measured values. These benchmarking cases with the FEM thermal modeling method successfully demonstrated the potential of the models to accurately predict the effective thermal conductivity of an enhanced thermal conductivity oxide nuclear fuel. The FEM thermal modeling was used to predict UO2-BeO nuclear fuel thermal conductivities with different BeO percentages, and then the reactor fuel thermal behavior was analyzed using the UO2-BeO nuclear fuel thermal conductivities and other material properties. The analysis results show significant temperature decrease for the UO2-BeO nuclear fuel compared to the traditional UO2 fuel, and then the safety of the reactor would be improved.  相似文献   

8.
Approximate but highly accurate solutions for the temperature distribution, fin efficiency, and optimum fin parameter for a constant area longitudinal fin with temperature dependent internal heat generation and thermal conductivity are derived analytically. The method of least squares recently used by the authors is applied to treat the two nonlinearities, one associated with the temperature dependent internal heat generation and the other due to temperature dependent thermal conductivity. The solution is built from the classical solution for a fin with uniform internal heat generation and constant thermal conductivity. The results are presented graphically and compared with the direct numerical solutions. The analytical solutions retain their accuracy (within 1% of the numerical solution) even when there is a 60% increase in thermal conductivity and internal heat generation at the base temperature from their corresponding values at the sink temperature. The present solution is simple (involves hyperbolic functions only) compared with the fairly complex approximate solutions based on the homotopy perturbation method, variational iteration method, and the double series regular perturbation method and offers high accuracy. The simple analytical expressions for the temperature distribution, the fin efficiency and the optimum fin parameter are convenient for use by engineers dealing with the design and analysis of heat generating fins operating with a large temperature difference between the base and the environment.  相似文献   

9.
The dynamic analysis and the active vibration control of piezoelectric laminated beams under thermal load are presented. The beam is modeled using two noded finite elements with four mechanical and a variable number of electric potential degrees of freedom at each node. In the thickness direction, the thermal and the electric fields are approximated as piecewise linear across an arbitrary number of sublayers in a layer. Cubic Hermite interpolation is used for the deflection and electric potentials at the sublayers and linear interpolation is used for the axial displacement and the shear rotation. The thermal field is computed using a consistent six-noded thermal finite element with a quadratic interpolation along longitudinal direction and a linear interpolation along thickness direction. The temperature distribution and undamped natural frequencies are obtained for composite and sandwich beam under cantilever and clamped-clamped boundary conditions and compared with 2D-FE Abaqus results. The finite element equations derived are converted into modal model to represent them in the state space form. This model is then reduced using Hankel norm for designing the LQG controller. Optimal control technique is used to control the vibration of the beam. The designed LQG controller controls the tip deflection of composite and sandwich cantilever beams and midpoint deflection of clamped-clamped beams.  相似文献   

10.
The paper reports on the measuring technique and values of the measured thermal properties of some commonly used insulation materials produced by local manufacturers in Saudi Arabia. Among the thermal properties of insulation materials, the thermal conductivity (k) is regarded to be the most important since it affects directly the resistance to transmission of heat (R-value) that the insulation material must offer. Other thermal properties, like the specific heat capacity (c) and density (ρ), are also important only under transient conditions. A well-suited and accurate method for measuring the thermal conductivity and diffusivity of materials is the transient plane source (TPS) technique, which is also called the hot disk (HD). This new technique is used in the present study to measure the thermal conductivity of some insulation materials at room temperature as well as at different elevated temperature levels expected to be reached in practice when these insulations are used in air-conditioned buildings in hot climates. Besides, thermal conductivity values of the same type of insulation material are measured for samples with different densities; generally, higher density insulations are used in building roofs than in walls. The results show that the thermal conductivity increases with increasing temperature and decreases with increasing density over the temperature and density ranges considered in the present investigation.  相似文献   

11.
Thermal stress distributions in an annular fin with rectangular profile made of functionally graded material (FGM) are considered. The material properties of annular fin are assumed to be graded along the fin radius as a power-law function while the Poisson’s ratio is taken to be constant. The governing equations are solved analytically for specific value of inhomogeneity parameter of thermal conductivity and all numerical values of inhomogeneity parameters of modulus of elasticity and linear thermal expansion coefficient. The effect of the inhomogeneity parameters on temperature distribution and thermal stresses are presented in graphical form. The formulation is validated with benchmark results in the literature. It is also shown that functionally graded annular fin is subject to lower stresses, although it has higher tip temperature than the homogeneous one.  相似文献   

12.
天然气水合物导热系数的研究对于模拟自然界天然气水合物的成藏和天然气水合物勘探、开采具有重要意义。本文介绍了获取天然气水合物导热系数的实验测试和模拟计算方法,分析了气体水合物导热特性、导热机理以及水合物复合体系导热。总结了水合物导热规律,即外界温压条件和晶穴占有率对水合物的导热产生影响,且水合物的导热具有相似的温度压力依赖关系,并呈玻璃体的导热特性。水合物玻璃体导热特性由水合物笼型结构决定,而客体分子的存在强化了水合物导热的玻璃体属性。指出非稳态下天然气水合物导热性能变化研究对分析天然气水合物在常压下的稳定性、确定甲烷水合物等最佳储存温度、从导热角度探讨自保护效应机理等具有重要意义。  相似文献   

13.
The effective thermal conductivity of tin powder filled high density polyethylene composites is investigated experimentally as a function of filler concentration and the measured values are compared with the existing theoretical and empirical models. Samples are prepared by compression molding process, up to 16% volumetric concentration of tin particles. The thermal conductivity is measured by a modified hot wire technique in a temperature range from about 0°C to 70°C. Experimental results show a region of low particle content, up to about 10% volume concentration, where the increase in thermal conductivity is rather slow. The filler particles are dispersed in the matrix material in this region, the thermal conductivity is best predicted by Maxwell's model and Nielsen's model with A=1.5, φm=0.637. Whereas, at high filler concentrations, the filler particles tend to form agglomerates and conductive chains in the direction of heat flow resulting in a rapid increase in thermal conductivity. A model developed by Agari and Uno estimates the thermal conductivity in this region, using two experimentally determined constants.  相似文献   

14.
In this work, application of the homotopy perturbation method (HPM) and an inverse solution for estimating unknown thermal parameters such as the variable thermal conductivity parameter (β), the thermogeometric parameter (K), and the nondimensional coefficient of thermal expansion (χ) in an annular fin subjected to thermal stresses is presented. Initially, to obtain the nondimensional temperature distribution from the heat equation, the forward method is employed using an approximate analytical solution based on HPM. Thereafter, a closed form solution for the temperature-dependent thermal stresses is obtained using the classical theory of thermoelasticity coupled with HPM solution containing the temperature distribution. Next, for satisfying a particular stress criterion which makes relevance in selecting appropriate configurations for selecting the finned system, unknown thermal parameters are obtained using an inverse approach based on the Nelder–Mead simplex search minimization technique. The objective function is taken as the sum of square of the residuals between the measured stress field and an initially guessed value which is updated iteratively. It is found that more than one type of temperature distribution may yield a given stress distribution, thereby giving rise to different fin efficiencies. The agreement between the actual and the predicted results was found to be satisfactory.  相似文献   

15.
A new method is proposed for measuring thermal diffusivity and thermal conductivity simultaneously using the inverse solution for one-dimensional unsteady heat conduction. Unlike previous method proposed by authors, the new procedure does not require the temperature measurement for a long time duration after the temperature starts changing at a sensor position; and then a selection of time duration can be chosen such that the measured temperature change becomes large enough to ensure a required accuracy for the estimated values of thermal diffusivity and thermal conductivity. The measurement is usually completed within 3 min until the temperature rise at the thermocouple position reaches a certain temperature level, for example 1% of an error level. This method has the additional advantage of being independent of the surface condition, except for the requirement of two or three sensing positions in the material. The accuracy of the estimated values is also similar to the error level of the sensor at these positions.  相似文献   

16.
Thermal diffusivity data at room temperature and uniaxial pressure of 1 MPa are reported for five sets of crystalline rocks—granite, granodiorite, gabbro, basalt and gneiss. Diffusivity ranges between approximately 0.6 and 1.9 mm2/s, the lower end of the range being appropriate for basic rocks and the upper end for quartz-bearing acidic rocks. The scatter in diffusivity for each data set is significantly more than that of thermal conductivity, because the diffusivity of water is typically less than 10% of the diffusivity of most common minerals, whereas water conductivity is 25–30% of the conductivity of the minerals. For a sample set of uniform mineralogy in which porosity varies, a greater variation of diffusivity than of conductivity is therefore expected. For three of the sets sufficient mineralogical data were available to permit the assessment of methods of estimating thermal diffusivity from mineral content. All models tested yielded higher mean values of diffusivity than the means of the measured values. No model was found to be able to predict diffusivity to better than approximately 20%, but if that accuracy is sufficient, a simple geometrical model, for which only quartz content must be known, is adequate. The diffusivity data have been combined with measurements of thermal conductivity and density to provide estimates of specific heat. These all tend to be higher than those reported in the literature. For some rocks, such as the basalts, this can be explained in terms of relatively high water content and the very high specific heat of water compared with that of most common minerals. For the granites and granodiorites, the new specific heat data redefine the previously published means and ranges, by increasing the data base by approximately an order of magnitude.  相似文献   

17.
ThermalConductivityMeasurementofSemitransparentMediaatTemperaturesfrom300to800KbyHot-WireMethodThermalConductivityMeasurement...  相似文献   

18.
Nanofluids, as new heat transfer fluids, are at the center of attention of researchers, while their measured thermal conductivities are more than for conventional heat transfer fluids. Unfortunately, conventional theoretical and empirical models cannot explain the enhancement of the thermal conductivity of nanofluids. Therefore, it is important to understand the fundamental mechanisms as well as the important parameters that influence the heat transfer in nanofluids. Nanofluids’ thermal conductivity enhancement consists of four major mechanisms: Brownian motion of the nanoparticle, nanolayer, clustering, and the nature of heat transport in the nanoparticles. Important factors that affect the thermal conductivity modeling of nanofluids are particle volume fraction, temperature, particles size, pH, and the size and property of nanolayer. In this paper, each mechanism is explained and proposed models are critically reviewed. It is concluded that there is a lack of a reliable hybrid model that includes all mechanisms and influenced parameters for thermal conductivity of nanofluids. Furthermore, more work needs to be conducted on the nature of heat transfer in nanofluids. A reliable database and experimental data are also needed on the properties of nanoparticles.  相似文献   

19.
A predictive model for estimating thermal contact conductance between two nominally flat metallic rough surfaces has been developed and experimentally validated. The predictive model consists of two complementary parts, the first of which is a surface deformation analysis to calculate the actual area of contact for each contact spot, while the second accounts for the effects of constriction resistance and gas gap conductance between the contacting surfaces. A surface characterization technique is developed which generates an equivalent 3-D surface profile from multiple 2-D profiles and determines the unique wavelengths of importance for the surface deformation and constriction resistance models. For given surface profiles and material properties of two contacting surfaces, and a specified contact pressure, the surface characterization technique filters out non-essential wavelengths on the surface, after which the surface deformation analysis calculates the deformation and contact area of each contacting asperity by considering three different modes of deformation, namely, elastic, elastic–plastic, and plastic. The constriction resistance model is then used to calculate the constriction resistance for each contacting asperity based on the area of contact and radius of curvature of the asperity. The constriction resistance values for all the contacting asperities are then used to calculate the total thermal contact conductance. An experimental facility has also been constructed to measure thermal contact conductance of interfaces to verify the results of the predictive model. Good agreement has been found between the model predictions and experimental measurements, validating the modeling approach.  相似文献   

20.
This paper proposed an analytical model which can calculate the effective thermal conductivity (ETC) of a spiral-wound Lithium-ion battery (Li-ion battery). It bases on a two-dimensional energy balance with both radial and spiral heat transfer, as well as internal thermal contact resistance (TCR) considered simultaneously and studies the influence of winding layers and winding tension on the ETC. Results show that the analytical data are in good agreement with the numerical results. With the winding layers decreased and the winding tension enhanced, the ETC of Li-ion battery increases gradually. The radial temperature in Li-ion battery is also investigated which demonstrates a relatively higher temperature when considering the internal TCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号