共查询到20条相似文献,搜索用时 78 毫秒
1.
为了开发更优质的耐火材料以提高切割丝用钢的洁净度,试验采用MoSi2炉研究了MgO、MgO-CaO两种耐火材料对95Cr切割丝用钢中夹杂物的影响。结果表明,MgO、MgO-CaO两种坩埚冶炼均能使钢成分控制在目标范围内,夹杂物成分落点控制在目标低熔点区内。但与MgO坩埚相比,MgO-CaO坩埚净化钢液的效果更好,主要表现为两个方面。一方面,钢中P、S、Als、T[O]含量均更低。特别是w([S])可降低至0.000 6%,w([Al]s)降低到0.000 3%,w(T[O]) 降低到0.000 5%。另一方面,钢中夹杂物数量更少、尺寸更小、复合夹杂物中Al2O3的含量更低。具体表现为,经MgO-CaO坩埚冶炼后,钢中等效直径小于2 μm的夹杂物所占比例为91%,而经MgO坩埚冶炼的钢,此项值仅为78%;经MgO-CaO坩埚冶炼后,钢中复合夹杂物中w([Al2O3])几乎都低于10.0%。这主要是因为MgO-CaO耐火材料中的MgO、CaO均能脱磷,同时CaO还有间接脱硫、去除钢中Al2O3夹杂物的作用。 相似文献
2.
通过改变精炼过程造渣工艺,减少铝和铝矾土的加入量,达到控制钢中夹杂物形态的目的.试验结果表明,对于钢帘线的精炼,最有效控制夹杂物形态的渣是矿石钙硅石或钙硅石的混合物。 相似文献
3.
精炼渣对非铝脱氧钢中夹杂物影响的实验研究 总被引:1,自引:0,他引:1
实验用氧化镁质坩埚在MoSi2炉上进行,实验钢种为重轨钢,选用Si-Ca-Ba合金为脱氧剂。实验发现,随精炼渣碱度(R)的增大,钢液中全氧降低,夹杂物总数、总面积和平均半径减小。精炼渣中w(Al2O3)为13%~20%时夹杂物的总数及总面积最小;硼(Al2O3)〉20%时细小夹杂物比例明显增大。精炼渣中的二氧化硅、三氧化二铝对夹杂物中二氧化硅和三氧化二铝的质量分数有直接影响,其在渣组成为钙斜长石成分的实验中尤为明显。因此,通过控制精炼渣的成分来控制非铝脱氧钢中夹杂物的组成是可行的。 相似文献
4.
5.
6.
结合生产实践,采用"EAF(电炉初炼)→LF(炉外精炼)→VD(真空脱气)→LF返加热→VC(真空浇铸)"工艺,通过配料配碳,EAF初炼炉控碳减少钢水过氧化,LF精炼过程准确控制精炼渣成分深度脱氧和脱硫,VD过程有效控制真空脱气处理时间和真空度,LF返加热控制软吹气量来避免卷渣,浇铸过程采用精炼中间包、真空浇铸和水口吹氩等手段,50Cr5MoV材质支承辊钢锭氧质量分数控制在20×10~(-6)以下,锻件高倍分析下夹杂物含量合格,该类支承辊锻件超声波探伤合格,加工过程夹杂物外露现象明显减少。 相似文献
7.
皮下夹杂是造成表面裂纹的原因之一。为了查清皮下夹杂的来源,通过对钢中添加保护渣,耐火材料,炉渣和模内残留物这4种加入物的特征和形成的规律观察及研究。对夹杂物的来源作出判断依据。 相似文献
8.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3 ≤ 37%、MgO 10%、(% CaO+% MgO)/% SiO2为10、SiO2含量尽量低的渣系,钢中Al2O3、MgO·Al2O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按\ 相似文献
9.
在1 873K,MgO坩埚内进行了VOD精炼渣与SUS444铁素体不锈钢之间的脱氧平衡试验,考察了精炼渣对不锈钢中T.O含量及夹杂物组成、数量和尺寸分布的影响。结果表明,脱氧终点钢中w(T.O)=0.006 3%~0.007 4%,提高精炼渣碱度,降低渣中Al2O3的活度,有利于降低钢中T.O含量。精炼渣碱度增加,试样中单位面积夹杂物的个数及夹杂物的平均面积分数都减小。降低渣中Al2O3含量,夹杂物平均粒径也降低。加入脱氧合金后,钢中夹杂物主要为Al2O3、MgO·Al2O3及含有少量SiO2、MnO的复合氧化物;钙处理后,钢中夹杂物主要为球形的MgO·Al2O3-CaO。随着精炼渣中a(MgO)/a(Al2O3)的增加,MgO·Al2O3夹杂物中xMgO/xAl2O3随之增加。根据试验,R=3.5、w(Al2O3)=10%、w(MgO)=10%、w(CaF2)=5%的精炼渣具有良好的精炼效果。 相似文献
10.
帘线钢中夹杂物的控制技术 总被引:3,自引:0,他引:3
为了满足对生产轮胎用钢帘线更高强度和更高生产率的要求,必须降低钢中非金属夹杂物的尺寸和含量.本文讨论因钢包渣引起的外来夹杂物的成分控制机理及拉拔过程中硬质夹杂物的破裂行为.目前,日本神户制钢在该项技术领域取得重大突破,正在生产低夹杂优质钢帘线. 相似文献
11.
12.
13.
研究的帘线钢的冶炼流程为150 tLD-RH-LF-软吹氩-CC工艺。通过LD出钢时加入Si-Mn脱氧,并在LF加入低碱度顶渣进行钢渣反应控制钢中非金属夹杂物的塑性。结果表明,RH-LF-中间包和铸坯阶段,钢中主要夹杂物分别为MnO-Al2O3-Si02(RH),Ca0-Al2O3-Si02(LF)和MnO-Al2O3-SiO2(中间包和铸坯),采用Si-Mn脱氧和SiC扩散脱氧,低碱度低Al2O3顶渣精炼,控制T[O]≤20×10-6,[A1]s≤0.0013%,可有效控制钢中夹杂物数量和尺寸,以及控制夹杂物中Al2O3含量并形成可塑性夹杂。 相似文献
14.
Lifeng Zhang 《国际钢铁研究》2006,77(3):158-169
The control of inclusions in tire cord steels and techniques used in the production process are extensively reviewed. Inclusion and segregation requirements for the tire cord steel are discussed. The deformability of an inclusion is significantly affected by its Al2O3 content. Inclusions containing 20% Al2O3 has best deformability. The undeformable inclusions can be avoided by controlling the dissolved aluminum in the steel. Low basicity slags favour the generation of deformable inclusions. When the basicity R (=CaO/SiO2) = 0.8‐1.5, the dissolved aluminum in the steel should be 1‐5ppm to achieve 20% Al2O3 in inclusions. With R=1.0‐1.4, in order to control [Al] in the range of 1‐5ppm, the slag should contain approximately 8% Al2O3. The technologies to control inclusions in tire cord steels are reviewed including steel deoxidizer choice, steel refining method, slag carry over from BOF to the ladle, ladle stirring practice, control of nitrogen pickup and caster curvature. Control methods to decrease the central segregation in the tire cord steel are briefly reviewed, such as electromagnetic stirring during continuous casting. 相似文献
15.
16.
17.
试验的36MnVNS4含硫非调质钢(/%:0.36C,0.66Si,1.00Mn,0.010P,0.045S,0.26V,0.0110N)的冶炼工艺流程为铁水+废钢-70 t EBT EAF-LF-方坯连铸-轧制。研究了LF 19.82%Al2O3,(CaO)/(SiO2)=2.64和14.63%Al2O3,(CaO)/(SiO2)=2.15两种渣系精炼对软吹后钢中氧含量,喂S线后S的收得率以及钢中夹杂物成分和形貌的影响。结果表明,高碱度白渣精炼工艺有利于钢中氧含量的降低,但不利于钢中硫含量的稳定;精炼渣碱度(CaO)/(SiO2)由2.64降低至2.15时,有利于钢中硫含量的稳定控制,硫的回收率由35%提高至75%;两种精炼工艺下钢中的夹杂物分布、形貌和组成基本相同。通过钢包钙处理,长条状MnS夹杂转变为球状复合夹杂。 相似文献
18.
19.
当前在轴承钢中氧含量已经能够控制在极低水平的情况下,Ds类夹杂物成为影响其质量稳定性的主要因素之一。为解决这一问题,本研究提出了利用非铝脱氧工艺,不使用铝作为脱氧剂,而采用硅锰预脱氧、渣面扩散脱氧、真空终脱氧、精炼过程造低碱度渣的方式生产GCr15轴承钢。与传统铝脱氧生产工艺相对比,非铝脱氧工艺轴承钢中主要夹杂物为硅酸盐,含有少量钙铝硅复合夹杂物,减少了形成Ds类夹杂物的镁铝尖晶石和钙铝酸盐,显著降低了Ds类夹杂物的含量,在轧材中能够将Ds类夹杂物稳定控制在0.5级以下,评级为0级的样品占比高达91.67%。该工艺能够获得稳定的生产效果和产品质量,并为高品质轴承钢生产提供理论及技术指导。 相似文献
20.
采用MoSi2电阻炉在MgO质坩埚内进行了精炼渣成分(%:47~64CaO、13~23SiO2、15~25Al2O3、5~10MgO、0~8CaF2;CaO/SiO2=2.0~4.5)对0.95%C-1.50%Cr GCr15轴承钢中氧含量和夹杂物的影响的实验研究。实验中发现,随精炼渣碱度CaO/SiO2由2增加至4.5,钢液中的终点全氧含量由20×10-6降至11×10-6,夹杂物的总数量、总面积和平均半径减小。适当提高Al2O3含量或添加CaF2,减少MgO含量,可以显著提高炉渣吸附夹杂物的速度和能力。低碱度渣精炼的钢液中夹杂物成分含有≥20%SiO2,塑性较好,夹杂物的尺寸为15~20μm。高碱度渣精炼的钢液中典型的夹杂物是氧化铝和铝镁尖晶石等脆性夹杂物,尺寸≤5μm。 相似文献