共查询到19条相似文献,搜索用时 46 毫秒
1.
局部均值分解(Local mean decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了本文方法的有效性。 相似文献
2.
局域均值分解(Local Mean Decomposition, LMD)是近年出现的一种新的时频分析方法,在故障诊断领域的应用日益广泛。本文提出一种改进的局域均值分解和小波降噪结合的降噪方法,并与小波变换的信号降噪方法、基于集合经验模态分解(Ensemble empirical mode decomposition, EEMD)和小波的信号降噪方法进行对比,利用信噪比和均方根误差比较降噪效果。再通过滚动轴承内外圈故障信号的频谱分析实例,证明该方法很好地去除混杂在故障信号中的噪声,准确地判断出滚动轴承发生故障的类型及部位。 相似文献
3.
利用Hilbert-Huang变换(Hilbert-Huang Transformation,简称HHT)对滚动轴承进行故障诊断时,发现振动信号中包含的噪声对诊断结果影响较大。为克服此不足,提出了一种小波改进阈值法与HHT相结合的信号分析方法。该方法首先应用小波改进阈值方法对滚动轴承故障信号进行预处理,然后对去噪后的信号进行经验模态分解(Empirical Mode Decomposition,简称EMD),接着选取含有故障信息的本征模函数(Intrinsic Mode Function,简称IMF)分量进行边际谱分析,从而提取出故障特征频率,并判断故障类型。仿真和实验结果验证了该方法的有效性。 相似文献
4.
5.
一种谱峭度和Morlet小波的滚动轴承微弱故障诊断方法 总被引:1,自引:0,他引:1
提出一种基于谱峭度和Morlet小波的滚动轴承微弱故障诊断新方法。该方法利用Morlet小波的滤波特性,基于谱峭度表征的Morlet小波系数最大化原则,采用频带平移及外扩的方法自适应地在全频范围内定位由冲击信号激起的各个共振频带,再利用谱峭度和带宽这两个参数有选择地利用一个或若干个共振带进行轴承微弱故障诊断。与原有的谱峭度快速算法相比,该方法能有效避免一个共振带被人为分割为多个频带以及将非共振频带并入共振频带中的现象,从而提高了轴承故障诊断效果。另外,该方法避免了传统方法只利用一个共振带而丢弃其他频带的做法,可以利用找到的不同共振频带的轴承信息进行微弱故障特征增强,以提高微弱故障诊断性能。滚动轴承微弱故障实验证明了新方法的有效性。 相似文献
6.
扩展工况传递路径分析方法所需的输入信号均在汽车运行工况下采集的,混杂有其他干扰信号,严重影响分析结果的精确性。针对此问题,应用小波阈值降噪技术对OPAX方法进行改进。首先,构造了适合于车辆运行工况振动数据的小波估计阈值以及阈值函数。其次,以一辆装备四缸汽油机的乘用车为例,采集车辆在3WOT工况下,悬置主动端,被动端,车内响应点的振动加速度信号,整车系统的频响函数等。建立了从动力总成到车内座椅,方向盘和地板的传递路径分析模型。在发动机2阶工况下,对比地板处振动数据的实测值与计算值,发现两者吻合较好,验证了模型的准确性。最后以地板处实测值为标杆,对比改进后的OPAX计算值与原计算值,结果表明改进后的计算值更接近实测值,且在峰值频率处表现优异,有效提高了OPAX方法的分析精度。 相似文献
7.
8.
针对滚动轴承故障诊断问题,在分析了基于二进制小波包分解的增强峭度图方法的不足后,提出了基于谐波小波包分解的改进增强峭度图方法。通过计算故障信号的改进增强峭度图,筛选出峭度值最大的最优节点,利用最优节点处的谐波小波包系数进行信号重构,并对重构信号做增强包络谱分析,利用故障特征频率的理论计算值与增强包络谱中峰值明显的谱线进行对比,从而对轴承故障类型做出判断。运用所提出的诊断方法分别对滚动轴承内圈故障模拟、实测信号进行分析,结果表明,该方法具有一定的可靠性,能够满足实际的工程需要。 相似文献
9.
将1.5维谱分析和Teager能量算子相结合,提出了1.5维能量谱的分析方法,并针对滚动轴承故障诊断问题,从提高故障信号信噪比的角度出发,提出基于EEMD降噪和1.5维能量谱的故障诊断新方法。该方法首先对故障信号进行聚合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)运算,得到一组本征模态函数(Intrinsic Mode Function,IMF)分量后运用相关系数-峭度准则对其进行筛选,并利用筛选出的IMF分量重构信号,最后计算重构信号的1.5维能量谱,从而获得轴承故障特征频率信息。利用该方法对滚动轴承内圈故障的模拟数据以及实测数据分别进行分析,诊断结果令人满意。 相似文献
10.
11.
现实中滚动轴承的工况复杂易变,无法有效地对其进行故障诊断。对此,提出一种基于粒子群优化的细菌觅食(Particle Swarm Optimization and Bacterial Foraging Algorithm,PSO-BFA)和改进Alexnet(第二代卷积神经网络)的滚动轴承故障诊断方法。该方法将Alexnet的结构简化,并分别在其前两层池化层之后添置局部归一化层以降低训练成本;将以小批量样本softmax的交叉熵为损失函数,按Adam迭代优化法小样本、少迭代次数训练改进Alexnet后的变负荷样本诊断精度设计为适应度函数,并结合PSO中粒子移动速度的更新方法更新BFA中细菌的游动方向来寻找改进Alexnet的结构等相关参数;根据PSO-BFA所得的参数,以相同的训练方法大样本、多迭代次数训练改进Alexnet,实现复杂工况下滚动轴承多状态故障诊断。实验结果表明所提出的方法对复杂工况下滚动轴承16种故障状态的诊断是可行的,且有更高的诊断精度、更好的抗干扰和泛化性能。 相似文献
12.
滚动轴承故障导致振动信号中出现多阶模态冲击响应,为了提取单阶模态冲击响应的模态参数,由于Laplace小波相关滤波受多阶模态冲击响应的影响,提出了一种基于EEMD和Laplace小波的滚动轴承故障诊断方法。先用EEMD把振动信号中的多阶模态脉冲响应分解为各单阶模态冲击响应分量,然后用从分解的分量的频谱中选取所需的单阶模态冲击响应分量,再用Laplace小波相关滤波对选取的单阶模态冲击响应分量进行分析,便可以诊断出故障。通过对仿真信号和滚动轴承内圈、外圈、滚动体数据分析很好地验证了提出的方法的有效性。 相似文献
13.
轴承故障会导致振动信号中出现冲击响应成分,可通过对冲击响应成分的周期的检测与提取, 进行局部故障诊断。但在复杂工况下,故障脉冲易被周围噪声淹没,在分析EEMD和形态学滤波方法的基础上,将EEMD方法与形态学滤波方法相结合,提出结构元素(SE)选择方法,并用于本征模态信号中冲击响应特征的提取。通过将该方法用于轴承外圈、内圈局部故障状态下的特征的检测,结果表明该方法能有效提取周期性脉冲成分并抑制噪声。 相似文献
14.
15.
基于PSO改进深度置信网络的滚动轴承故障诊断 总被引:1,自引:0,他引:1
针对深度置信网络(Deep Belief Network,DBN)用于轴承故障诊断时,网络层结构调试比较费时等问题,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)的DBN算法,以及基于该算法的轴承故障诊断模型。该模型利用PSO算法优选DBN网络结构,并通过自适应时刻估计法微调模型参数,随后运用具有最优结构的DBN模型直接从原始振动信号中提取低维故障特征,并将其输入到Soft-max分类器中识别轴承的故障模式。该算法与支持向量机、BP神经网络、DBN、堆叠降噪自编码等方法进行对比分析,实验结果表明,PSO改进的DBN算法具有更高的准确率以及更好的鲁棒性。 相似文献
16.
由于滚动轴承早期故障信号特征微弱,变分模态分解(Variational Mode Decomposition,VMD)的性能易受模态数和惩罚因子设置的影响,提出了一种自适应优化VMD参数的方法。基于中心频率判断本征模态函数(Band Limited Intrinsic Mode Functions,BIMF)是否混叠的思想提出中心频率混叠商算法,利用最小中心频率差与次小中心频率差的比值确定模态数。利用模糊熵原理,提出求和模糊熵算法优化惩罚因子。利用相关系数筛选模态分量,重构信号提取故障信息。通过对强噪声下外圈故障信号、内圈故障信号的分析,表明该方法能自适应确定模态数和惩罚因子,抑制模态混叠,能够从强噪声下有效地提取出故障信号特征,实现滚动轴承故障诊断。 相似文献
17.
18.
19.
由于海洋环境噪声复杂,噪声等级高,水下待识别目标信噪比低,从而造成了特征提取困难,目标识别率低的问题。基于此,文章提出了基于改进小波阈值的深度学习水下目标分类方法。此方法在传统小波阈值去噪的基础上提出了一种新的小波阈值函数,对于所采用的具体阈值将其与分解尺度相联系,从而实现降低背景噪声,提升水下目标分类识别率的目的。此方法对实测舰船辐射噪声信号进行小波分解,提取每一层的高频小波系数并对其进行处理;对处理完的信号再提取时频特征,最后将其输入后续的深度学习网络中。实验结果发现:在利用原有数据集情况下,利用基于改进小波阈值的深度学习进行水下目标的分类识别,采用卷积神经网络算法可达到88.56%的分类识别率。对前述实验结果进一步分析后,采用生成对抗网络的方法扩充数据样本,可达到96.673%的分类识别率。 相似文献