首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
通过建立的中厚板轧制压力3种预算温度模型对Q235钢(/%:≤0.22C,≤1.40Mn,≤0.35Si)200mm铸坯经12道次轧成20 mm板的各轧制道次轧制压力进行预算模拟,分析轧制温度模型对中厚板轧制压力预算精度的影响。结果表明,轧制温度模型通过轧件变形抗力对轧制压力预算精度产生影响,在中厚板轧制时,采用轧制温度模型△t=24Z[(t+273)/1000]4/h对轧制压力进行预算的精度相对稳定且误差相对较小,为0.67%~12.41%。  相似文献   

2.
马忠伟  张慧  胡鹏  赵沛  宋波 《工程科学学报》2015,37(12):1630-1636
通过对中厚板边部折叠试样的检测分析,对其产生机理和影响因素进行研究.结果显示,中厚板边部折叠现象是板材横轧宽展过程中侧面材料在轧制中受轧辊作用而翻转到板材表面的结果.折叠缺陷处所观察到的微观组织结构,是轧制前板材表面在高温下形成的氧化铁及脱碳层形成的.建立了轧制有限元数值模型,证实折叠缺陷是在轧制过程中由侧面的折叠翻转所造成的.通过实验室实验,得到铸坯边部质量、轧制制度、宽展道次及轧制压下量对中厚板折叠缺陷的影响.实验结果表明横轧宽展导致折叠缺陷的出现,铸坯边部质量对其没有影响,轧制过程中铸坯侧边的折叠经翻平形成表面折叠缺陷,随着横轧展宽的道次及压下量增加,折叠缺陷距边部距离变大.   相似文献   

3.
分析中厚板轧制过程的工艺特点,指出不同轧制阶段的宽展对宽度设定精度都有影响.基于经典宽展公式,得到多道次轧制下的宽展系数计算模型,在该模型基础上给出纵横纵和横纵轧制策略下宽展阶段目标厚度的计算方法,并提出相应的自学习算法;指出采用纵横纵轧制策略,可以消除坯料公差对宽度设定精度造成的影响;而合理使用测宽仪和人工卡量数据,有利于提高宽度设定精度.  相似文献   

4.
对GCr15轴承钢在圆-椭圆-圆孔型轧制后的横截面积进行了计算,并根据棒材生产线上的现场数据,考虑轧制速度对宽展的影响,通过使计算道次延伸率与实际值误差的标准差最小对现有模型中的宽展修正系数进行了优化,使轧后横截面积的计算值与实际值误差在±3%以内,说明模型具有较高的精度,可以为轧制GCr15轴承钢时的孔型设计和轧制工艺设定提供参考。  相似文献   

5.
《宽厚板》2015,(3)
中厚板轧制压力分别采用凸轮试验和热模拟试验两种变形抗力模型进行预报,变形抗力模型对中厚板轧制压力预报精度的影响显得尤为重要。相关分析研究结果表明:在中厚板轧制过程中,凸轮试验变形抗力模型对轧制压力的预报精度较为稳定;热模拟试验变形抗力模型对轧制压力的预报精度波动较大,但在中间轧制道次,热模拟试验变形抗力模型对轧制压力的预报精度高于凸轮试验变形抗力模型。  相似文献   

6.
采用DEFORM-3D三维大变形热力耦合弹塑性有限元软件对Ф21.5 mm GCr15轴承钢坯料在四架KOCKS轧机连轧成Φ16 mm棒材工艺过程进行了数值模拟。分析了棒材在KOCKS轧机孔型中轧制时的等效应力、等效应变、温度场以及轧制力等轧制工艺参数。结果表明,棒材在KOCKS机组中的变形主要发生在延伸孔型,精轧孔型的变形量较小,尤其在最后一道次;棒材在KOCKS机组中的宽展是不均匀,在靠近轧辊的区域宽展较小,在辊缝处宽展较大并产生鼓形;棒材在KOCKS机组中等效应变已达到芯部渗透,这对保证组织致密度和成品内部质量是非常有利的,现场各道次轧制力的实测值与模拟值的相对误差<2%。  相似文献   

7.
棒线材轧制的尺寸精度至关重要,但因轧制道次多、孔型内变形复杂,所以提高尺寸精度难度大。建立棒线材连轧过程全部道次轧件尺寸预测通用模型,为计算和预测棒线材轧制变形提供了高效的方法。分别预测了轧制?9 mm规格Q235和65Mn线材以及轧制?40 mm规格40Cr和20CrMnTi棒材全部道次的轧件尺寸,其中轧制参数按照模型推荐的全部道次压下量进行预测,最终预测成品尺寸的相对误差为-1.56%~0.78%,绝对误差为-0.14~0.07 mm,预测精度满足目前钢铁企业实际生产的最高精度需求。该模型在计算不同类型生产线轧制的各类钢种时具有通用性,有较高的计算时效性,可作为棒线材轧制工艺数字化转型的基础模型。  相似文献   

8.
分析中厚板轧制过程不同道次辊缝设定精度对轧件终轧尺寸精度的影响,证明了轧件终轧尺寸精度对前面道次的辊缝设定精度不敏感。基于此特性,提出中厚板电-液联合辊缝设定新方法——无回缩变精度快速辊缝设定法。采用该方法,轧制过程液压缸油柱不用回缩,而且前面道次液压不进行微调,从而节省了辊缝设定时间。实践证明该优化方法可明显提高轧制节奏,具有较大的推广价值。  相似文献   

9.
通过对钢厂高速线材热连轧过程的传热分析,借助ABAQUS软件建立了线材与轧辊的3维热机耦合模型,对42A钢(0.39%~0.46%C)从Φ16 mm精轧至Φ5.5 mm轧材的10道次精轧过程的温度场,应力-应变场和轧制力进行了模拟。得出精轧后轧件心部温度升高130℃,表面温度降低10℃,轧件降温主要是轧件的热辐射和水冷造成的。10道次轧制力的计算值与实测值的相对误差为1.88%~4.50%。  相似文献   

10.
影响中厚板轧制终轧温度的因素及其控制   总被引:1,自引:0,他引:1  
结合中厚板轧制特点,给出了中厚板轧制温度的计算模型,模型考虑了热辐射和对流、高压水除鳞、轧辊的热传导和塑性功对轧件温度变化的影响.分析了待温时间、轧制速度、出炉温度和轧制道次对终轧温度的影响,为中厚板轧制温度控制提供了依据.  相似文献   

11.
陈述 《特殊钢》2021,42(1):61-65
研究了700 MPa 级Ti 微合金化高强钢(/%:0.05~0.07C,0.05~0.10Si,1.10~1.25Mn,0.075~0.095Ti)230 mm ×(1580~1780)mm连铸板坯粗轧工艺中定宽量100~300 mm和2~6道次分配量对最终10 mm板组织的影响.结果表明,定宽量的增加会增加组织的不...  相似文献   

12.
开发了低碳(C≤0.12%)Nb-V微合金化S500QL高强度钢板,使用120 t BOF+LF+VD的洁净钢冶炼工艺,采用两阶段控制轧制(第一阶段950~1 070℃区间轧制,第二阶段开轧≤890℃、终轧≤850℃)及轧后以7~20℃/s的冷速在线直接淬火(DQ),经620~670℃,3 min/(mm·T)回火生产...  相似文献   

13.
利用铅试样在1:10相似比,轧辊直径130 mm,辊身长度265mm,最大轧制压力150 kN,电机功率5.5kW的实验轧机上对轧辊直径1200mm,辊身长度2200 mm,最大轧制力25000 kN,轧机功率1 000 kW的钢厂轧机进行孔型轧制模拟试验,研究0.1~0.5 mm压下量,轧辊直径97.72~107.65 mm,以及轧制润滑系数0.21~0.45对轧件宽度变化的影响。结果表明,轧制的型钢宽展随压下量增大,摩擦系数的增大而增加;将复杂非对称面进分部研究后合并影响的模式研究复杂断面型钢的宽展是可行的;获得的切深孔型宽展计算模型经实验室轧制变形测量证明是有效的。  相似文献   

14.
通过对压缩比、压下率和轧制温度的控制,使L450M管线钢(/%:0.06C,1.52Mn,0.19Si,0.017Ti,0.048Nb,0.028Als)获得了良好的强韧性.结果表明,200 mm坯粗轧末3道次和精轧前3道次达到20%以上的大压下率,可以使12 mm钢板在随后的冷却过程中形成细小的微米级晶粒.晶粒尺寸基...  相似文献   

15.
中厚板轧制过程基于灰色关联度的厚度修正方法   总被引:1,自引:0,他引:1  
由于中厚板轧制过程传统道次修正方法稳定性较差,提出了基于灰色关联度的道次修正算法.通过灰色关联度模型计算出最近生产的n块钢板所有道次以及当前正在轧制钢板前m道次与当前轧制道次轧制力自学习系数的关联度,根据关联度的高低来确定当前道次和后续道次的自学习系数,并通过道次修正对后续辊缝进行二次调整,以获取精确的目标出口厚度.实际应用结果表明,产品目标出口厚度的命中率提高了2.5%~3.0%,具有很高的现场应用价值.  相似文献   

16.
GCr15轴承钢棒材连轧过程温度场数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了GCr15轴承钢(0.99%C、1.47%Cr)160 mm×160 mm方坯经粗轧、一中轧、二中轧、KOCKS轧机轧成Φ25.0 mm和Φ35.0 mm的轧件温度场预测模拟系统;研究了轧件轧制过程中温度的变化,一中轧入口轧制速度(0.55 m/s和1.1 m/s)对轧制过程轧件温度的影响,以及轧后冷却工艺(2段式和3段式快冷)对轧件温度的影响。结果表明,轧件温度的计算值和实测值的相对误差≤3%。  相似文献   

17.
AH36船板钢的生产工艺流程为120 t BOF-LF-220/250 mm坯连铸-2250 mm轧机轧制。对CSP轧制的控制和新剪切工艺生产的10~24 mm AH36船用开平板钢(/%:0.07C、0.26Si、1.24Mn、0.014P、0.006S、0.031Als、0.028Nb、≤0.290Ceq)和传统10~24 mm AH36船用中板钢(/%:0.13C、0.28Si、1.26Mn、0.024P、0.014S、0.038A1s、0.024Nb、≤0.363Ceq)的力学性能进行了分析和对比。结果表明,0.07%C AH36船用钢开平板的力学性能达到0.13%C传统AH36船用钢中板的力学性能指标,0.07%C AH36钢开平板韧脆性转变温度为-60℃,较传统的0.13%C AH36钢中板韧脆性转变温度-40℃低。0.07%C AH36钢比传统0.13%C AH36钢有较好的工艺性能和较高的尺寸稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号