首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
杨星  崔红  闫联生 《炭素》2007,(3):21-25
选用聚碳硅烷(PCS)为前驱体,对密度分别为1.34g/cm^3,1.52g/cm^3和1.62g/cm^3的针刺炭布C/C材料进行液相致密化处理,制得密度达1.75g/cm^3的C/C-SiC复合材料,并与密度为1.85g/cm^3的同结构高密度C/C材料的弯曲强度和抗氧化性能进行了对比分析。结果表明:密度为1.34g/cm^3的C/C材料经过PCS致密化处理,在保持高密度C/C材料的弯曲强度同时,显著提高了材料的抗氧化性能。  相似文献   

2.
选用聚碳硅烷(PCS)为前驱体,分别将3D编织和2.5D编织的C/C复合材料,由初始密度1.32 g/cm3制备成密度为1.70g/cm3的C/C-SiC复合材料,测试了它们的弯曲强度和抗氧化性能,并分析了微观结构。实验表明:3D编织的C/C-SiC复合材料具有更高的平均弯曲强度,达到226.1 MPa;两种C/C-SiC复合材料均具有相当优异的抗氧化性,1 000℃下,2 h最大氧化失重率不到5%,但2.5D编织的C/C-SiC复合材料抗氧化性能更优异。  相似文献   

3.
采用化学气相渗积工艺制备出密度分别为0.81,1.10,1.26,1.52 g/cm3的C/C复合材料坯体,再以聚碳硅烷(PCS)为先驱体,通过先驱体转化法制备出密度相近的C/C-SiC复合材料,并对它们的弯曲强度和抗氧化性能作了对比分析。结果表明:由密度为0.81 g/cm3的C/C复合材料坯体制得的C/C-SiC复合材料具有最高的弯曲强度,达265 MPa,具有最好的抗氧化性能,在1 000℃氧化2 h后失重率为2.61%。  相似文献   

4.
以纳米SiC粉为惰性填料,采用先驱体浸渍裂解法制备C/C-SiC复合材料,研究了C/C预制体密度对复合材料致密性和弯曲性能的影响。结果表明,纳米SiC粉的添加能有效抑制先驱体裂解过程中的体积收缩,提高致密度。C/C预制体密度对制得的复合材料性能有很大的影响,其中用密度为1.24 g/cm3的C/C预制体制得的复合材料试样性能最优,其最终密度为1.80g/cm3,开孔率为7.32%,弯曲强度达220 MPa。  相似文献   

5.
C/C多孔体对C/C-SiC复合材料微观结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
以4种纤维含量相同(32%,体积分数,下同),用化学气相渗透(chemical vapor infiltration,CVI)法制备了4种密度的碳纤维增强碳(carbon fiber reinforced carbon,C/C)多孔体,基体炭含量约20%~50%.利用液相渗硅法(liquid silicon infiltration,LSI)制备了C/C-SiC复合材料,研究了C/C多孔体对所制备的C/C-SiC复合材料微观结构和弯曲性能的影响.结果表明:不同密度的C/C多孔体反应渗硅后,复合材料的物相组成均为SiC,C及单质Si;随着C/C多孔体中基体炭含量的增加,C/C-SiC复合材料中SiC含量逐渐减少而热解炭含量逐渐增加.C/C-SiC复合材料弯曲强度随着材料中残留热解炭含量增加而逐渐增加,热解炭含量为约42%的C/C多孔体所制备的C/C-SiC复合材料的弯曲强度最大,达到320 MPa.  相似文献   

6.
涂层工艺对C/C复合材料结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
采用热处理和包埋工艺制备了C/C复合材料的MoSi2/SiC抗氧化涂层,对组织结构、界面、弯曲断口进行了显微观察,分析了氧化保护涂层及其工艺对其机械性能的影响,结果表明,该工艺在C/C复合材料表面生成涂层的同时,使基材内部的界面也被硅化;并且发现,热解炭基体比炭纤维更易与Si反应生成SiC。C/C复合材料经涂层工艺处理后,弯曲强度降低;热处理过程中发生的材料氧化是弯曲强度下降的主要原因  相似文献   

7.
对T300碳纤维在真空环境下,在600、900、1200、1500℃进行热处理,用液硅熔渗反应法(liquid silicon infiltration,LSI)制备了不同微观组织结构的C/C-SiC复合材料。采用光电子能谱分析了热处理对纤维表面结构的影响,用光学显微镜和扫描电子显微镜对材料微观形貌进行了观察分析。采用双槽口剪切法(DNS)测试了C/C-SiC复合材料层间剪切强度(interlaminar shear strengh,ILSS),并分析了纤维热处理对材料剪切性能影响的微观机理。结果表明:碳纤维经热处理后,表面化学成分发生变化,氧含量显著降低,改变了碳纤维增强树脂基复合材料(carbon fiber reinforced resin matrix composite,CFRP)先驱体中纤维/树脂界面结合强度,从而在CFRP裂解后形成了具有不同微观结构的C/C预制体,通过液Si对不同微结构的C/C预制体进行熔渗,获得具有不同微观结构的 C/C-SiC复合材料;DNS 测试发现碳纤维热处理能够有效改善 C/C-SiC复合材料的层间剪切强度,主要是由于纤维经热处理后制备的C/C-SiC复合材料中,SiC基体相分布较均匀并包裹在碳纤维周围,导致纤维/基体界面结合强度高。经1500℃热处理纤维增强的C/C-SiC复合材料,其剪切强度为34 MPa,与未处理的相比,ILSS提高了33%。  相似文献   

8.
以纳米SiC粉为惰性填料,采用先驱体浸渍裂解法制备C/C-SiC复合材料,研究了不同纳米SiC含量浆料对复合材料致密过程及烧蚀性能的影响。结果表明,不同纳米SiC含量浆料对制得的复合材料性能有很大的影响,添加纳米SiC粉质量分数为16.67%时制得的复合材料性能最优,其最终密度为1.86 g/cm~3,开孔率为6.93%,线烧蚀率和质量烧蚀率分别为0.0041mm/s和0.0013g/s。  相似文献   

9.
C/C复合材料抗氧化涂层研究进展   总被引:2,自引:0,他引:2  
杨星  崔红  闫联生 《炭素》2006,(4):16-21,11
结合国内外近几年的研究报道,介绍了C/C复合材料抗氧化涂层的基本要求及类别、各涂层体系及制备方法,并简要阐述了抗氧化涂层的研究方向。  相似文献   

10.
为提高C/C复合材料的高温抗氧化性能,以聚碳硅烷(PCS)浸渍裂解法和Si,Mo,W粉浆料刷涂反应法在C/C复合材料表面制备SiC-MoSi2-WSi2复合涂层,借助X射线衍射仪、扫描电镜等分析手段,对涂层的微观形貌、组织结构及物相进行分析研究,优化涂层制备工艺,考察了涂层的高温抗氧化性能,分析了抗氧化机理.制备的SiC-MoSi2-WSi2复合涂层厚度200 μm左右,主要由SiC,MoSi2,WSi2构成.1500℃氧化试验结果表明复合涂层的静态氧化失重率较SiC单层涂层降低50%以上,较大地改善了C/C复合材料的抗氧化性能.  相似文献   

11.
以针刺网胎无纬布为预制体,采用化学气相渗透(CVI)、压力浸渍树脂/炭化(PIC)及反应熔体浸渗法(RMI)等组合工艺快速制备C/C-SiC复合材料。研究了C/C多孔体的高温热处理温度对C/C-SiC复合材料微观结构和热学性能的影响,结果表明:多孔体经高温热处理后密度有所减小而孔隙率增大;相较于1800℃热处理,多孔体经2200℃热处理后制备的C/C-SiC复合材料密度更大(ρ=2.12g/cm3),孔隙率更低(η=2.7%),SiC基体含量更高(ω=41.11%);C/C-SiC复合材料的比热容和平均热膨胀系数随着温度的升高而增大,而热扩散系数和导热系数随着温度的升高不断减小;多孔体经2200℃热处理后制备的C/C-SiC复合材料X-Y向具有更大的导热系数和更小的热膨胀系数,其室温下的导热系数为83.120W/(m·K),室温~1000℃的平均热膨胀系数为1.608×10-6/℃。  相似文献   

12.
分别以PAN基预氧丝和炭纤维为原材料,采用准三维针刺工艺制备2种纤维预制体,然后采用化学气相渗积(CVI)工艺制备出密度相近的C/C复合材料坯体,最后对坯体进行熔融渗硅处理得到C/C-SiC复合材料,研究了纤维种类对C/C-SiC复合材料力学性能和断裂机理的影响。结果表明:纤维种类对C/C-SiC复合材料的力学性能和断裂机理有显著影响,炭纤维增强C/C-SiC复合材料的弯曲强度较高,达到140.3 MPa,断裂失效模式为"假塑性"断裂;预氧丝C/C-SiC复合材料的弯曲强度较低,为112.6 MPa,呈脆性断裂。产生以上结果的主要原因是增强纤维的力学性能不同,纤维表面形貌不同,进而导致所制备的C/C-SiC复合材料增强纤维与基体的结合强度不同。  相似文献   

13.
基体改性剂含量对C/C复合材料抗氧化性能的影响   总被引:1,自引:0,他引:1  
采用氧化烧蚀试验研究了改性剂硼玻璃含量对C/C复合材料抗氧化性能的影响,通过扫描电镜(SEM)观察分析了其抗氧化机理。结果表明:随着改性剂硼玻璃含量的增加,基体改性C/C复合材料的显气孔率逐渐降低,抗氧化能力逐渐增强,当硼玻璃的含量超高9.0wt%后,C/C复合材料抗氧化能力的提高趋于平缓;在基体改性C/C复合材料的氧化过程中,改性剂硼玻璃起到了内外涂层的作用,使其抗氧化能力大大提高。  相似文献   

14.
赵娟  刘朗  郭全贵 《炭素技术》2007,26(3):17-20
采用液硅渗透和料浆烧结法在石墨基体上制备了SiC/Si—MoSi2外涂层。详细研究了外层厚度对所制备的SiC/Si—Mosiz涂层抗氧化性能的影响。结果表明,外层厚度对涂层的氧化防护能力有很大影响,当外层厚度小于80μm时,随着外层厚度的增加,材料的抗氧化性能增加;当外层厚度为80μm左右时,材料的抗氧化性能达到最佳;继续增加外层厚度,材料的抗氧化性能反而下降。并从微观结构上分析和解释了外层厚度对所制备涂层抗氧化性能影响的原因。  相似文献   

15.
为了提高C/C复合材料的高温抗氧化性能,采用含锆有机溶剂实现了对C/C复合材料的ZrC改性,通过粉末包埋法在其表面制备了SiC过渡层,通过溶胶凝胶法制备了外部的复合陶瓷氧阻挡层。设计三因素三水平的正交试验,研究了ZrC改性增重、过渡层厚度和氧阻挡层厚度三个主要因素对C/C复合材料高温抗氧化性能的影响。9个样品在1600℃马弗炉中进行了30 min的静态氧化测试,结果表明,ZrC改性增重5%、过渡层厚度为60μm和氧阻挡层厚度为80μm的样品抗氧化性能最好,质量损失率仅约5.51%。  相似文献   

16.
C/C复合材料高温力学性能优异,但其最大缺点是在高温下会被快速氧化,而在其表面制备抗氧化涂层是提高其使用寿命的最直接有效的方法。该文综述了国内外C/C复合材料抗氧化涂层的材料体系的最新研究成果,根据磷酸盐、硅化物、稀土硅酸盐、硼化物、难熔金属碳化物等各种材料的物理化学性质,分析介绍了各种体系的抗氧化机理。通过总结对比大量涂层体系的抗氧化性能,指出目前研究中存在的问题及高温抗氧化涂层的发展趋势。  相似文献   

17.
采用高温反应法和PVD法在SiC工业合成炉内制备了C/C复合材料耐高温抗氧化SiC陶瓷涂层.用XRD、SEM对其物相组成和显微结构进行了表征与分析,讨论了涂层的形成机理,并研究了其高温氧化性能.研究结果表明,所制备的陶瓷涂层主要由α-SiCβ-SiC组成,晶粒发育完整,涂层表面致密、无裂纹,且与碳基体结合紧密,涂层厚度约600μm,涂层抗氧化性良好,在1500℃空气中氧化10h失重约为0.3%.  相似文献   

18.
采用炭布/酚醛树脂预浸料铺叠、固化、一次性炭化制备出密度为1.34 g/cm3的C/C复合材料,研究了制备工艺中升温速率和胶层厚度对其弯曲性能的影响。研究表明:升温速率和胶层厚度是C/C复合材料弯曲性能的重要影响因素。当升温速率为2℃/min时,未涂胶的C/C复合材料弯曲强度为43.70 MPa,比升温速率为5℃/min时提高了15.9%,而且所制备的C/C复合材料孔隙结构均匀;当胶层厚度为一层(0.2 mm)时,C/C复合材料的弯曲强度达48.17 MPa,比未涂胶时提高了12.2%,比胶层厚度为三层(0.6 mm)时提高了22.7%,且弯曲测试后裂纹较小,界面结合性较好,呈现塑性断裂。  相似文献   

19.
刹车速度对C/C-SiC复合材料摩擦磨损性能的影响   总被引:2,自引:0,他引:2  
对反应熔体渗透工艺制备的C/C-SiC复合材料,在MM-1000型摩擦磨损试验机上进行了模拟飞机制动刹车实验,重点研究了C/C-SiC复合材料在不同刹车速度下的摩擦磨损性能.研究表明:随着刹车速度的增加,C/C-SiC复合材料的摩擦系数先少许增加然后再减小,在10 m/s时达到最大值0.52.磨损率在低速时保持较低的数值,随着刹车速度的增加呈线性增加,但仍小于C/C复合材料的磨损率,表明C/C-SiC复合材料具有优良的耐磨损性能.当刹车速度超过20 m/s时,由于能载水平较高,摩擦表面出现犁沟现象并形成大量球状磨屑,摩擦系数急剧减小.  相似文献   

20.
以正硅酸乙酯(TEOS)为硅源,酚醛树脂为碳源配制SiC先驱体,以编入了SiC粉末的炭纤维毡为预制体,采用先驱体浸渍裂解(PIP)与反应熔渗(RMI)相结合的方法制备出密度为1.93 g/cm3的C/C-SiC复合材料。借助X射线衍射仪和扫描电子显微镜(SEM)对先驱体及复合材料的相组成和微观结构进行分析。采用等离子体烧蚀枪进行烧蚀试验,测试C/C-SiC复合材料的耐烧蚀性能。烧蚀30 s后,材料表面保持完整,无明显裂纹及烧蚀坑,烧蚀中心出现了明显的氧化层及白色粉末状烧蚀产物,材料的质量烧蚀率和线烧蚀率分别为0.137 mg·s-1,5.50μm·s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号