首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为构筑新型低伤害耐温性清洁压裂液,在合成表征系列羧酸盐双子表面活性剂、测试其水溶性的基础上,采用MR301 界面流变仪考察了分子结构(疏水链长度及联接基碳数)、浓度、纳米粒子含量对羧酸盐双子表面活性剂增稠清洁压裂液效果的影响,并按行业标准SY/T 5107—2005 评价了羧酸盐双子表面活性剂—纳米粒子清洁压裂液性能,用FT—IR 和1H—NMR 谱图确认了产物为所需的合成结构,水溶性实验确立系列羧酸盐双子表面活性剂溶解温度为34 ~ 65 ℃。黏度测试结果表明:①疏水链碳数越多,羧酸盐双子表面活性剂增稠能力越强,溶液黏度突变升高对应活性剂浓度越小;②疏水链碳数相同,联结基碳数增加,其增稠能力越强,耐温性越好;③ 0.04% 纳米ZnO 可使3%DC16-4-16 溶液高温(100 ℃)黏度由10 mPa·s 升至30 mPa·s ;④最优羧酸盐双子表面活性剂耐温清洁压裂液配方是3%DC16-4-16+0.04% 纳米ZnO,其具有良好的耐高温剪切稳定性、携砂稳定性及快速破胶性。该清洁压裂液应用于塔里木盆地致密砂岩气藏效果良好。  相似文献   

2.
实验合成了羧酸盐双子表面活性剂DC16-4-16,用FT-IR和1H-NMR谱图确认产物结构;水溶性实验确立DC16-4-16溶解温度为63℃。黏度测试结果表明,DC16-4-16质量分数越高,其增黏能力越强,溶液黏度突变升高对应质量分数为3%;温度越高,溶液黏度越低;纳米Zn O可大幅度提高DC16-4-16溶液黏度及耐温性。增黏机理研究发现,DC16-4-16在溶液中自组装形成蠕虫状胶束,且蠕虫状胶束相互缠结形成空间网络结构,故溶液表现出高黏度。  相似文献   

3.
为了有效提高我国低渗、特低渗油藏采收率,提出了构筑低界面张力阴离子双子表面活性剂黏弹流体的思路,以满足驱油剂同时提高波及效率及洗油效率、注入性好、无色谱分离的要求。本文以阴离子双子表面活性剂分子结构对其溶液黏度、黏弹性、界面活性影响为研究基础,构筑了GCET黏弹流体,并评价了其主要性能及油藏环境适应性。研究表明,羧酸盐双子表面活性剂溶液流变性及界面活性优于磺酸盐双子表面活性剂的;疏水链碳数较大(m=18),间隔基团碳数适中(s=3)的羧酸盐双子表面活性剂溶液流变性能较好;疏水链碳数较大(m=18),间隔基团碳数较小(s=2)的羧酸盐双子表面活性剂溶液界面活性较高。以此,优化分子结构设计并构筑的GCTE流体具有良好的黏度行为、黏弹性、界面活性及油藏温度及矿化度适应性。在模拟矿化度(12000 mg/L)条件下,0.5%的GCTE黏弹流体黏度12.68 mPa·s;溶液黏弹性较好(=0.3661、松弛时间=11.302 s);稳态油水界面张力达到2.93×10~(-3)mN/m。GCTE黏弹流体在非常规油藏提高采收率方面具有良好的应用前景。图17表12参27  相似文献   

4.
针对目前CO_2干法压裂工艺技术存在压裂液黏度低、携砂困难等技术难题,将氟醚羧酸盐类表面活性剂增稠剂(FAL-16)和络合金属离子(铝)有机盐增稠助剂(FAL-31)分别按1%加量加入液态CO_2中制备了液态CO_2增稠压裂液,采用高压管路流变实验模拟了液态CO_2增稠压裂液在管路内的增稠过程,研究了液态CO_2增稠压裂液的流变性能。研究结果表明:在液态CO_2中加入1%的增稠剂FAL-16和1%增稠助剂FAL-31能显著提高液态CO_2压裂液的黏度,液态CO_2增稠压裂液的黏度最高可以达到20 m Pa·s(压力20 MPa、温度0℃、剪切速率393 s-1),增黏倍数在90数498之间,液态CO_2增稠压裂液呈现剪切稀化特性,黏度随着温度的增加呈指数递减;随温度的升高,液态CO_2增稠压裂液体系的流动指数n增大,稠度系数k减小。  相似文献   

5.
为有效降低清洁压裂液药剂用量及对储层潜在的伤害,使用MCR301界面流变仪,系统研究了新型阴离子双子表面活性剂(GA-16)、正十二醇、疏水缔合聚合物(GRF-1H)及纳米二氧化钛对GA-16溶液黏度的影响。结果表明,随着GA-16质量分数增大,其溶液的黏度增大,当GA-16质量分数为3%时具有经济高效性;GRF-1H及正十二醇均能有效提高GA-16溶液黏度,纳米二氧化钛能增强GA-16溶液耐温性。根据试验结果优选出复配体系配方为3%GA-16+3.5%十二醇+0.15%GRF-1H+0.125%纳米二氧化钛(配方中的百分数为质量分数),可满足中低温(≤90℃)油藏清洁压裂液有效携带支撑剂所需的黏度(25mPa·s)要求。  相似文献   

6.
为提高清洁压裂液的耐温性能、降低压裂液成本,以长碳链烷基酰胺丙基二甲胺、环氧氯丙烷、盐酸等为主要原料合成了Gemini型阳离子表面活性剂GX22,研究了GX22自增稠形成的清洁压裂液体系的流变性和耐温性。结果表明,在不加反离子盐的条件下,GX22溶于水即可形成胶束体系。GX22清洁压裂液具有明显的剪切变稀性,流动曲线可用Cross模型模拟;其触变性随GX22浓度的增加而增强,体系结构强度随浓度增加而增强;随角频率的增加,压裂液弹性模量G'和黏性模量G'均增加,且G'大于G',体系以弹性为主;GX22清洁压裂液耐温性良好,含3%GX22清洁压裂液在110℃、170 s~(-1)下剪切90 min后的黏度为33.53 mPa·s。GX22合成步骤少、原料易得、产物无需后处理,压裂液配制简单,与同类型清洁压裂液相比,成本较低。  相似文献   

7.
研究了由两性表面活性剂LQ-FJ在不同浓度下形成的清洁压裂液及其性能。结果表明,两性表面活性剂LQ-FJ在水中4 min可均匀溶解、自增稠为黏弹性清洁压裂液;当LQ-FJ浓度达2%时无需反离子盐即可形成耐温达110℃的清洁压裂液。黏温曲线表明,2%LQ-FJ体系具有热增稠和热变稀特性。流变特性研究表明,2%LQ-FJ体系具有温度滞后环和剪切触变性,流动曲线可用共转Jeffreys本构方程表征。破胶实验表明,煤油、阴离子表面活性剂J1均可作为2%LQ-FJ体系的破胶剂,室温下破胶液黏度均小于1.5 m Pa·s。  相似文献   

8.
对阴离子型双子表面活性剂GA16-4-16溶液在高温下的流变性进行实验研究,考察了表面活性剂质量分数、无机盐和有机盐加量、温度对表面活性剂溶液黏度的影响.结果表明,GA16-4-16溶液黏度随其质量分数的增加而增加;加入质量分数小于0.04%的NaCl有一定增黏效果,而当加入量超过0.04%的无机盐(NaCl,A1Cl3·6H2O)对GA16-4-16溶液有降黏作用,加入一定浓度CaCl2溶液对GA16-4-16溶液有增黏作用;GA16-4-16与少量有机酸盐(水杨酸钠、十二烷基苯磺酸钠)复合后溶液黏度增大几倍甚至十几倍;GA16-4-16溶液黏度随温度的升高先升高后下降.对阴离子型双子表面活性剂在提高原油采收率方面的应用前景进行了展望.  相似文献   

9.
清洁压裂液在纯水介质中形成球形胶束,球形胶束演变进而形成高黏弹性的空间网状结构,实现对支撑剂的携带和造缝;遇地层中的油和水,胶束膨胀而崩解成低黏度的球形胶束,实现清洁压裂液的自动破胶。有6种途径将清洁压裂液耐温性能提高到100℃以上:提高表面活性剂浓度、采用非离子型表面活性剂与交联剂复 配、在阳离子表面活性剂中加入阴离子表面活性剂、采用高分子表面活性剂与胶束促进剂复配、采用两性表面活性剂卵磷脂与非水溶性有机醇类复配、采用阴离子表面活性剂与非离子表面剂和亲水性表面活性剂及疏水性有机醇复配。清洁压裂液在天然气的破胶中引入疏水缔合聚合物,实现清洁压裂液在天然气中的破胶和降低成本,是清洁压裂液研究发展的方向。  相似文献   

10.
表面活性剂与水溶性防锈剂相互作用的研究   总被引:2,自引:0,他引:2  
水基金属加工液、水基金属清洗剂中表面活性剂对水溶性防锈剂的防锈作用有一定的影响,利用锈蚀试验,电化学测试技术及现代物理分析方法考察了水溶性表面活性剂对水基金属加工液中防锈剂作用的影响,结果表明,在水溶性表面活性剂存在时,羧酸盐比胡酸盐能更有效地防止锈蚀的发生,且在一定范围内,羧酸盐抗锈蚀的能力随其碳数的增加与增加。  相似文献   

11.
为获得耐温性良好的压裂液体系,以硬脂酸、草酸、4-氨基-N,N-二甲基苯胺、N,N'-二氨基乙基乙二胺、1,3-二氯-2-丙醇为原料合成双子表面活性剂,以其作为稠化剂与氯化铵水溶液混合制得清洁压裂液,考察了该压裂液的耐温性、耐剪切性、携砂性和破胶性等。结果表明,与胍胶压裂液相比,该清洁压裂液耐温耐剪切性能好,120℃时的表观黏度为88 mPa·s,满足高温油气田的使用要求;携砂性能好,120℃时石英砂在压裂液中的沉降速度为0.79 mm/s;与地层水的配伍性良好;在压裂液中加入煤油即可自动破胶,无需加入破胶剂,便于使用。  相似文献   

12.
表面活性剂DWS与大庆原油形成超低油水界面张力,矿化度对油水界面张力的影响不明显;表面活性剂不影响聚丙烯酰胺的增黏性能,与聚合物配伍性好,但在油砂上的吸附量相对较大。在低渗透天然岩心上,水驱后二元复合驱平均提高采收率12.0%。在近似黏度和界面张力条件下,三元复合体系比二元复合体系多提高采收率3~5个百分点,但三元复合体系比二元体系的化学剂成本高。亲水亲油平衡是无碱表面活性剂形成超低界面张力的机理,疏水碳链长,相对分子质量大是无碱表面活性剂的一个特征。合成无碱表面活性剂的方向包括选用更长的单一疏水碳链,或合成含两个疏水碳链的双子表面活性剂。  相似文献   

13.
研究了阳离子双子表面活性剂GC-18的黏度与浓度的关系,考察了有机阴离子添加剂水杨酸钠和阴离子双子表面活性剂对GC-18溶液黏温性的影响。GC-18溶液的黏度随浓度的增加而升高。水杨酸钠浓度增加,GC-18溶液的黏度先增加后降低。阴离子双子表面活性剂的加入可明显改善GC-18溶液的黏温性,且阴离子双子表面活性剂的浓度越高、烷基链越长,对GC-18溶液的黏温性影响越大。水杨酸钠与阴离子双子表面活性剂对阳离子双子表面活性剂有协同增黏作用,低温下协同增黏效果明显。温度升高导致双子表面活性剂溶液中聚集体结构改变的问题,不能通过提高混合溶液中各组分的浓度来解决。  相似文献   

14.
改善清洁压裂液耐温携砂性能的方法研究   总被引:1,自引:0,他引:1  
介绍了粘弹性表面活性剂(VES)体系形成过程和特点.针对该清洁压裂液体系存在的问题,采用阳离子季铵盐和复合离子表面活性剂甜菜碱作为清洁压裂液主剂,使用邻羟基苯甲酸钠作为促冻剂,配制了VES冻胶体系,该体系可使油藏温度使用范围由60℃提高到70~100℃,清洁压裂液耐温性明显改善.考察了水溶性纤维对清洁压裂液中压裂砂支撑...  相似文献   

15.
临界胶束浓度是表面活性剂自聚形成胶束的重要参数。双子表面活性剂是具有双亲水基团、双疏水链的表面活性剂,比常规表面活性剂具有更低的临界胶束浓度和更高的表面活性。了解影响双子表面活性剂临界胶束浓度的内在、外在因素,有助于理解分子间的相互作用,分析碳链和联接基团等分子结构对其性能的影响,探究双子表面活性剂的自组织行为,从而更好地发挥双子表面活性剂的高表面/界面活性,开发新型高效表面活性剂。文中介绍了双子表面活性剂临界胶束浓度常用的测定方法,总结了双子表面活性剂疏水基团、联接基团、亲水基团、温度、无机盐等对双子表面活性剂临界胶束浓度的影响,并对影响结果进行了分析。  相似文献   

16.
在考察单一阳离子双子表面活性剂、阳离子聚合物溶液粘度的基础上,详细研究了阳离子聚合物对双子表面活性剂溶液的增粘作用及两者形成复合体系后粘度的影响因素.结果表明,阳离子双子表面活性剂Cn-s-n·2Br-1溶液粘度随其浓度增加而逐渐增大,当其连接基s=2时,随烷基链碳数m增大,其对溶液增粘性增大;向其溶液中添加适量阳离子...  相似文献   

17.
一种耐高温低伤害纳米复合清洁压裂液性能评价   总被引:1,自引:1,他引:0  
针对清洁压裂液的耐温性较差、滤失量过大等问题,研制了一种新型的耐高温低伤害纳米复合清洁压裂液。实验结果发现,一定浓度的MWNT,能够与蠕虫状胶束形成更为紧密的拟交联三维网状结构且能明显增黏;采用流变性实验优化MWNT质量分数为0.3%,得出纳米复合清洁压裂液配方为3%(w)BET-12两性表面活性剂+0.3%(w)MWNT。性能评价结果表明,在170s-1、150℃下,该压裂液黏度仍能保持在20mPa·s以上;70℃时滤失量相比传统清洁压裂液大大降低;剪切恢复性能良好,体系悬砂性能好,遇地层水或原油中烃类物质能自动破胶,高效且彻底,符合施工要求;对储层伤害较小,裂缝导流能力伤害率仅有8.9%。研究表明,该纳米复合清洁压裂液适合在中高温油气田推广应用。  相似文献   

18.
为改善大港油田孔南地区油藏疏水缔合聚合物/表面活性剂二元体系的液流转向能力,获得良好的增油效果,研究了聚合物和表面活性剂浓度、岩心渗透率和注入水除垢对疏水缔合聚合物溶液和疏水缔合聚合物/表面活性剂二元复合体系黏度和渗流特性的影响。结果表明,聚合物溶液和二元复合体系的黏度随聚合物浓度的增 加而增加,疏水缔合聚合物临界缔合浓度为1~2 g/L;在疏水缔合聚合物溶液中加入少量表面活性剂可以增强体系中疏水缔合聚合物疏水基团间的缔合作用,使黏度和渗流阻力增加;岩心渗透率越高,二元体系的阻力系数和残余阻力系数越低;用除垢软化水配制聚合物溶液和聚合物/表面活性剂二元体系的黏度最大,且聚合物浓度越小,软化水对其增黏效果越明显;用含垢软化水配制聚合物溶液和聚合物/表面活性剂二元体系的阻力系数和残余阻力系数最大、注入压力最高,液流转向效果最好。图4 表5 参16  相似文献   

19.
清洁压裂液研究进展   总被引:3,自引:0,他引:3  
清洁压裂液是一种无聚合物的黏弹性液体。其稠化剂为特定的表面活性剂,这些表面活性剂分子溶解在盐水中会形成棒状胶束,依靠胶束间相互缠绕形成的三维网状结构达到有效携砂;烃类物质能破坏表面活性剂的胶束结构,不需要外加破胶剂。因此,清洁压裂液的交联、携砂和破胶等原理都不同于常规压裂液。本文综述了清洁压裂液的增稠原理、流变性能、破胶性能,以及未来发展趋势。  相似文献   

20.
为获得起泡性能和耐温性能良好的稠油热采用起泡剂,评价了石油磺酸盐、烷基苯磺酸盐、α-烯烃磺酸盐、烷基醇醚羧酸盐、烷基醇醚磺酸盐等12种常用的国产表面活性剂的起泡能力和热稳定性。结果表明,烷基苯磺酸盐、α-烯烃磺酸盐、烷基二苯醚二磺酸盐、短链醇醚磺酸盐和短链醇醚羧酸盐具有较好的起泡能力和泡沫稳定性;12种表面活性剂中,长链α-烯烃磺酸盐和长链烷基苯磺酸盐在高温下的阻力因子最高,重烷基苯磺酸盐和石油磺酸盐的阻力因子最低;在实验条件下,各表面活性剂的耐温能力依次为:烷基苯磺酸盐α-烯烃磺酸盐烷基二苯磺醚二磺酸盐醇醚磺酸盐≈醇醚羧酸盐重烷基苯磺酸盐石油磺酸盐。建议用长碳链烷基苯磺酸盐或长链α-烯烃磺酸盐作为高温起泡剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号