首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用扫描电镜、XRD、析氢及电化学测试等对0.2%Ca、0.2%Y改性的Mg-2Zn-1Al (ZA21)轧制板材的微观组织和腐蚀行为进行了分析。结果表明,Ca和Y细化了晶粒,改变了第二相类型,降低了含Mn相中锰含量。在3.5%NaCl溶液中,优先腐蚀位点位于含Mn相附近的镁基体上,12 h腐蚀速率满足:ZA21 (8.59 mm/a)>ZA21+0.2%Ca (7.17 mm/a)>ZA21+0.2%Y (4.22 mm/a)>ZA21+0.2%Ca+0.2%Y (1.26 mm/a)。耐蚀性提升可归因于晶粒的细化;高Mn相消失,低Mn相和无Mn相生成导致微电偶腐蚀减弱;Mg、 Mg(OH)2、Ca3Al2O6·xH2O、CaY4O7和Y2O3组成的更致密、裂纹更浅、保护性更强的腐蚀产物膜替代了由Mg和Mg(OH)2组成的充满裂纹、保护作用有限的腐蚀产物膜。  相似文献   

2.
利用高温高压CO2腐蚀模拟实验以及ESEM, EDS, XPS和SEM等分析技术, 研究了4种不同含Cr量的X65管线钢的腐蚀速率、腐蚀形态和腐蚀产物膜结构特征. 结果表明: 含Cr量高的钢平均腐蚀速率小, 无Cr和含1\%Cr的钢的腐蚀形态为局部腐蚀, 含3%和5%Cr的钢的腐蚀形态为全面腐蚀. 在高温高压CO2腐蚀环境中, 含Cr钢的腐蚀产物膜为FeCO3和Cr(OH)3竞争沉积形成的多层结构, 其中1Cr-X65和3Cr-X65的腐蚀膜具有3层结构, 5Cr-X65的腐蚀膜是双层结构. Cr在腐蚀产物膜层中出现局部富集, 远高于基体中的Cr含量. 高含Cr量使腐蚀产物膜中的Cr(OH)3含量高, 并提高了腐蚀膜的保护性能, 从而引起腐蚀形态发生转变, 腐蚀速率降低. FeCO3和Cr(OH)3共沉积层膜对低铬钢的抗CO2腐蚀性能具有关键的影响.  相似文献   

3.
纯镁在模拟体液中的腐蚀机理   总被引:3,自引:0,他引:3  
考察纯镁浸泡于模拟体液(SBF)中所发生的化学和物理过程,实验材料为扩散退火态,浸泡时间3-21d。结果发现,镁的腐蚀速率随时间增加而降低,同时溶液pH递增;裂纹和腐蚀坑是材料损伤的主要形貌特征,而MgCl2的局部富积是形成腐蚀坑的重要原因;随着浸泡时间延长,Mg(OH)2沉积于试样表面并逐步增长,成为Ca、P在Mg表面沉积的屏障,因此抑制Mg(OH)2的形成和生长是诱导磷酸钙陶瓷在Mg表面沉积的必要条件。  相似文献   

4.
以高纯锆为母材制备Zr-1.0Fe-0.2Cu合金,并在400 ℃/10.3 MPa过热蒸汽中进行腐蚀实验。用SEM和TEM对合金基体及其腐蚀后生成氧化膜的显微组织进行研究。结果表明:Zr-1.0Fe-0.2Cu合金中只存在底心正交的Zr3Fe第二相,Cu元素易偏聚在Zr3Fe相内,使其不易以Zr2Cu相的形式析出,Cu元素的添加能够细化合金中Zr3Fe第二相。Zr-1.0Fe-0.2Cu合金在 400 ℃/10.3 MPa过热蒸汽中腐蚀100 d后,耐腐蚀性能优于Zr-1.0Fe以及Zr-4重熔合金,表明添加少量的Cu元素有利于改善合金的耐腐蚀性能。在腐蚀氧化过程中,含Cu的Zr3Fe相会滞后于合金基体α-Zr相氧化而进入氧化膜。随着氧化进程的加深,第二相中的Zr元素氧化后会以t-ZrO2的形式存在,Fe元素则氧化成m-Fe3O4。伴随着第二相的氧化进程,合金元素Cu和Fe会在氧化膜中扩散流失,不再呈现聚集状态。  相似文献   

5.
本文采用失重法、形貌分析、成分分析和电化学测试等方法研究了紫铜管长期埋藏于热带雨林土壤环境中的腐蚀行为。结果表面,紫铜管埋藏16年后,平均腐蚀速率为2.5μm/y,腐蚀失重规律符合幂函数模型,其拟合方程为C=0.4273t-0.246。紫铜管表面腐蚀产物呈淡绿色的致密鳞状结构,与金属基体结合良好。 XPS、EDS和FTIR分析结果显示该腐蚀产物主要成分为铜绿(Cu2(OH)2CO3)。电化学测试结果表明,埋藏16年后,紫铜管腐蚀速率变小,阻抗值明显增大,表明腐蚀产物膜对基体形成良好的保护作用,能有效减缓腐蚀过程的继续发展。  相似文献   

6.
本文采用XRD、SEM、EDS、增重法测量和热力学计算等手段研究了铸态GH3625合金在900 ℃下不同腐蚀介质中(Air、75 wt.% Na2SO4+25 wt.% NaCl和2% SO2+H2O+Air)腐蚀120 h后的高温腐蚀行为,探讨了不同腐蚀介质下氧化膜的形成及破坏机制。研究表明,GH3625合金在不同介质中腐蚀后,从合金最表层到合金内部结构均分为疏松氧化层、致密氧化层、贫Cr区和合金基体,其氧化层主要由NiO、Cr2O3和NiCr2O4组成。同时,合金在熔盐和高温酸性气氛中腐蚀后的贫Cr区深度(约14 μm和11μm)均大于在空气中氧化后贫Cr区深度(约8 μm),腐蚀介质对合金表层氧化膜的破坏程度从大到小依次为熔盐介质、高温酸性气氛介质、空气介质。合金的腐蚀主要是不同介质下合金表层氧化膜的形成与溶解的相互竞争,当GH3625合金在熔盐介质中腐蚀时,腐蚀机制主要是氧化膜与Cl-反应生成气相Cl2和与Na2O反应生成铬酸盐Na2CrO4;而当GH3625合金在酸性气氛介质中腐蚀时,腐蚀机制主要是Cr、Ni元素与SO2、O2的连续硫化和氧化反应。  相似文献   

7.
采用XRD、SEM、TEM和XPS等研究了RE和Ti元素对Zn-2.5Al-3Mg合金微观结构和耐蚀性的影响。结果表明,Zn-2.5Al-3Mg合金的微观结构由富Zn相、二元共晶(Zn-MgZn2/Mg2Zn11)和三元共晶(Zn/Al/Mg2Zn11)组成,而含有RE和Ti元素的合金中出现了新相(Ce1-xLax)Zn11和Al2Ti。电化学阻抗谱表明,相对于Zn-2.5Al-3Mg合金,Zn-2.5Al-3Mg-0.1RE-0.2Ti合金的耐蚀性得到了显著的提高。XPS分析结果表明,RE元素的添加促进腐蚀产物Zn5(CO3)2(OH)6和MgAl2O4的形成,而RE和Ti元素的同时添加促进腐蚀产物 Zn5(CO3)2(OH)6、ZnAl2O4和MgAl2O4的形成,且都抑制了疏松多孔ZnO的生成。Zn5(CO3)2(OH)6、ZnAl2O4和MgAl2O4能够很好地粘附在试样表面,提供一层致密的保护层,从而提高Zn-2.5Al-3Mg合金的耐腐蚀性。  相似文献   

8.
热法蒸发技术在废水处理方面得到广泛应用,且随着废水不断蒸发浓缩,溶液中的 Cl? 含量成倍增加,导致用于蒸发设备的材料也因此快速腐蚀而失效。2507 钢是一种 Cr、Mo 元素含量高的双相不锈钢,结合了铁素体和奥氏体不锈钢共同优点,因此具有极好的耐点蚀性能。为研究 2507 双相不锈钢在酸性高氯环境中的腐蚀情况,采用动电位极化、电化学阻抗谱、 Mott-Schottky 曲线以及动态浸泡试验等方法进行测试,利用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)以及 3D 显微镜对浸泡腐蚀后的试样性能进行表征。研究结果显示,随 Cl-浓度增加,腐蚀电位 Ecorr负移,腐蚀电流密度 Icorr增加,极化电阻 Rp 减小,且施主密度 ND和受主密度 NA增加,材料的耐蚀性降低。2507 双相不锈钢在酸性高氯(pH 为 3、120 g / L) 腐蚀液中浸泡 35 d 的平均腐蚀速率为 2.51 μm / a。试样表面蚀孔数量较少,蚀孔外径在 70~100 μm,平均点蚀深度为 20.493 μm,最大点蚀速率为 0.275 mm / a,属于轻度腐蚀,体现了不锈钢在酸性高氯环境中良好的耐蚀性。由于目前关于高氯废水蒸发设备材料的腐蚀数据非常缺乏,因此 2507 双相不锈钢的腐蚀情况可以为选材提供数据支撑。  相似文献   

9.
熔融氯化盐是下一代聚光式太阳能热发电站(第3代CSP)候选传热和储热介质,含MgCl2的熔融氯化盐对金属传热管道和储热容器腐蚀后在其表面形成MgO,MgO对管道耐腐蚀性能影响尚不清楚。通过对比碳钢和3种Fe-Cr-Ni合金在固态(345 ℃)和熔融NaCl-MgCl2(445和545 ℃)中的腐蚀行为,分析了MgO对4种试样在不同温度下的腐蚀行为机理。结果表明,在固态NaCl-MgCl2中,碳钢表面MgO壳致密且连续,可以保护试样免受腐蚀。在熔融NaCl-MgCl2中,4种试样表面也生成了致密的MgO壳,但它因热应力作用而开裂和剥落,熔融盐沿着氧化膜裂纹渗入MgO/基体界面,发生化学-电化学联合腐蚀反应,不能保护试样免受该熔盐腐蚀。  相似文献   

10.
Mg合金AZ91D在城市大气环境中的腐蚀行为   总被引:6,自引:0,他引:6  
林翠  李晓刚  李明  王凤平 《金属学报》2004,40(2):191-196
用扫描电镜、X射线衍射方法对Mg合金AZ91D在城市大气中的腐蚀层形貌,腐蚀产物进行了分析和研究。结果表明:腐蚀初期在材料表面生成一层Mg(OH)_2薄膜,随着腐蚀的不断进行,膜增厚并开裂,最终形成网状结构,在裂纹处水蒸气容易凝聚,腐蚀性气体及盐粒容易吸附,且裂纹或缝隙为氧的扩散提供了通道,造成Mg合金局部腐蚀严重,生成的腐蚀产物主要为Mg(OH)_2,Al(OH)_3,Mg_2CO_3(OH)_2·3H_2O和Mg_2(OH)_3Cl-4H_2O,这些微溶的腐蚀产物对基体起到了一定的保护作用,从而在后期降低了Mg合金的腐蚀速率。  相似文献   

11.
研究Mg-3.0Nd-0.2Zn-0.4Zr(NZ30K)镁合金上电沉积Cu镀层的前处理过程及耐腐蚀行为。研究结果表明:活化膜和浸锌层均优先在Mg12Nd共晶相表面沉积。Cu镀层能够为镁基体提供长达60 h的防护作用,这主要归因于其致密的镀层结构及浸泡过程中形成较稳定的钝化膜。热震试验证明镀层具有良好的结合力。  相似文献   

12.
通过浸泡试验、电化学测试、扫描电化学显微镜和腐蚀形貌分析等手段研究热处理工艺对轧制态Mg5Gd合金在3.5 wt.%NaCl饱和Mg(OH)2溶液中腐蚀行为的影响及机理,以期达到提高镁合金耐蚀性的目的.结果表明:固溶处理能显著降低Mg5Gd合金的腐蚀速率,并且使其腐蚀变均匀,腐蚀坑变浅,这主要归因于固溶处理可以熔解镁基...  相似文献   

13.
This work compared the corrosion of typical Mg alloys (AZ91, ZE41 and Mg2Zn0.2Mn) and high purity (HP) Mg in Hank’s solution at room temperature and in 3% NaCl saturated with Mg(OH)2. Corrosion was characterised by the evolved hydrogen and the surfaces after immersion. Corrosion in Hank’s solution was weakly influenced by microstructure in contrast to corrosion in the 3% NaCl solution. This is attributed to the formation of a more protective surface film in Hank’s solution, causing extra resistance between the α-Mg matrix and the second phase. The alloys with substantial Zn contents had a shorter incubation period in Hank’s solution.  相似文献   

14.
The effect of rolling reduction and annealing process on the microstructure and corrosion behavior of Mg−9Li−1Zn (LZ91) alloy was investigated. The test alloy sheets were cold rolled with the reduction of 50% and 75%, respectively, and then were annealed at 200 °C for 1 h. The microstructure of test alloys was observed by OM and SEM while the phase composition was determined by XRD. The corrosion property was evaluated by electrochemical measurements and immersion tests. The results show that LZ91 alloy sheet consists of α-Mg, β-Li and precipitated Mg−Li−Zn compounds (MgLi2Zn and MgLiZn phases). Dynamic recrystallization grains appear in β-Li phase during annealing process, leading to grain refinement. The results indicate that the increasing rolling reduction and performing the annealing process can enhance the corrosion resistance of LZ91 alloy. The 75% cold-rolled and annealed LZ91 alloy shows the best corrosion resistance.  相似文献   

15.
An extruded Mg−4Zn−0.2Mn−0.2Ca alloy was developed as potential biodegradable bone-plate due to its excellent biocompatibility. Long term in vitro immersion in Hank's solution and bending test were used to evaluate the degradability and the mechanical integrity of the alloy. The results revealed that the degradation rate of the bone-plate increased in the first 7 days and then decreased with the prolonged immersion time before it finally reached a steady stage (about 0.84 mm/a) after immersion for 90 days. The bending strength after immersion for 60 days was 67.6 MPa, indicating that the bone-plate could support certain mechanical load after long term degradation. The formation of corrosion pits after degradation stemmed from the separation of the continuously distributed second phases from Mg matrix under the action of micro-galvanic couples. As a result, the mechanical performance of Mg−4Zn−0.2Mn−0.2Ca alloy was aggravated owing to the corrosion holes on its surface.  相似文献   

16.
To study different corrosion resistances and surface film types of hexagonal close-packed (HCP) pure Mg and body-centered cubic (BCC) Mg−14wt.%Li alloy in 0.1 mol/L NaCl, a series of experiments were conducted, including hydrogen evolution, mass loss, in-situ electrochemical testing combined with Raman spectroscopy and microstructural observation. The results indicate that the corrosion resistance of pure Mg is superior to that of Mg−14Li, and the protective function of the surface films on both magnesium systems is elevated within 16 h of immersion in 0.1 mol/L NaCl. An articulated, thick, and needle-like surface film containing Li2CO3 on Mg−14Li, different from the typically thin, flaky Mg(OH)2 film on pure Mg, is confirmed via scanning electron microscopy (SEM). However, both surface films can be broken down at a high anodic over-potential. Thus, different corrosion resistances of the two Mg systems are ascribed to various protective films forming on their surfaces.  相似文献   

17.
The corrosion mechanism of Mg–Y alloys in 3.5% NaCl solution was investigated by electrochemical testing and SEM observation. The electrochemical results indicated that the corrosion potential of Mg–Y alloys in 3.5% NaCl solution increased with the increase of Y addition. The corrosion rate increased with the increase of Y addition because of the increase of Mg24Y5 intermetallic amounts. The corrosion gradually deteriorated with the increase of immersion time. The corrosion morphologies of the alloys were general corrosion for Mg–0.25Y and pitting corrosion for Mg–8Y and Mg–15Y, respectively. The main solid corrosion products were Mg(OH)2 and Mg2(OH)3C1.4H2O.  相似文献   

18.
An XPS investigation was carried out of the surface films, formed by exposure to ultrapure water, on mechanically ground Mg and the two Mg-Al intermetallic compounds: Al3Mg2 and Mg17Al12. The mechanically ground Mg surface had a film of MgO at the Mg metal surface covered by a Mg(OH)2 layer, formed by the reaction of the MgO with water vapour in the air. Upon immersion in ultrapure water, this film converted to a duplex film with an inner MgO layer next to the Mg metal and an external porous hydroxide layer. For both intermetallics, the XPS data is consistent with (i) preferential dissolution of Mg and (ii) a 10 nm thick film on the surface after immersion in ultrapure water; the film composition on Al3Mg2 was AlMg1.4O0.2(OH)5.4 whilst on Mg17Al12 the composition was AlMg2.5(OH)8.  相似文献   

19.
The influence of strontium (Sr) additions in the form of Mg–Sr master alloys from 0 to 0.6 wt% on the mechanical properties, corrosive nature, and microstructure of Al–9.2Mg–0.7Mn alloys is investigated. The material is studied in a fully annealed (O‐temper) and a sensitizing treatment at 150°C for 7 days. Here we demonstrate that there will be a new phase which might be (Al, Mg)17Sr2 formed in the as‐cast microstructure. When the Sr content is 0.2 wt%, under the premise that the mechanical properties of completely annealed alloy change little (relative to the matrix: the ultimate tensile strength increases by 8 MPa and the elongation only decrease by 1.6%), the intergranular corrosion resistance is significantly improved. The specific performance is that the mass loss from intergranular corrosion decreases by more than 53% from the addition of 0.2 wt% Sr after sensitizing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号