首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Ye  Y Huang  H Chen 《Food microbiology》2012,32(1):179-184
Several recent outbreaks associated with oysters have heightened safety concerns of raw shellfish consumptions, with the majority being attributed to Vibrio spp. The objective of this study was to determine the effect of high-hydrostatic pressure (HHP) followed by mild heating on the inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in live oysters. Inoculated oysters were randomly subjected to: a) pressurization at 200–300 MPa for 2 min at 21 °C, b) mild heat treatment at 40, 45 or 50 °C for up to 20 min and c) pressure treatment of 200–300 MPa for 2 min at 21 °C followed by heat treatment at 40–50 °C. Counts of V. parahaemolyticus and V. vulnificus were then determined using the most probable number (MPN) method. Pressurization at 200–300 MPa for 2 min resulted in various degrees of inactivation, from 1.2 to >7 log MPN/g reductions. Heat treatment at 40 and 45 °C for 20 min only reduced V. parahaemolyticus and V. vulnificus by 0.7–2.5 log MPN/g while at 50 °C for 15 min achieved >7 log MPN/g reduction. HHP and mild heat had synergistic effects. Combinations such as HHP at 250 MPa for 2 min followed by heat treatment at 45 °C for 15 min and HHP at 200 MPa for 2 min followed by heat treatment at 50 °C for 5 min reduced both V. parahaemolyticus and V. vulnificus to non-detectable levels by the MPN method (<3 MPN/g). HHP at ≥275 MPa for 2 min followed by heat treatment at 45 °C for 20 min and HHP at ≥200 MPa for 2 min followed by heat treatment at 50 °C for 15 min completely eliminated both pathogens in oysters (negative enrichment results). This study demonstrated the efficiency of HHP followed by mild heat treatments on inactivation of V. parahaemolyticus and V. vulnificus and could help the industry to establish parameters for processing oysters.  相似文献   

2.
The effect of high hydrostatic pressure (HHP) treatment (300, 400 and 500MPa for 1 and 3min at 20°C) on the microbiological shelf-life and microbiota composition of Aloe vera gel during 90days of storage at 4°C was investigated. Aerobic mesophilic and psychrotrophic bacteria, as well as moulds and yeasts, were enumerated after HHP treatment and through cold storage. Randomly selected isolates from the count plates were identified by standard methods and the API identification system. Results showed that HHP treatment at or over 400MPa for 3min were effective to keep the microbial counts to undetectable levels during the whole storage period, and consequently the microbiological shelf-life of A. vera gel was extended for more than 90days at 4°C. The microbiota in the untreated A. vera gel was dominated by Gram-negative bacteria (mostly Rahnella aquatilis) and yeasts (mostly Rhodotorula mucilaginosa). In contrast, Gram-positive bacteria tentatively identified as Arthrobacter spp. and Micrococcus/Kocuria spp. were the predominant microorganisms in samples pressurized at 300MPa for 1 and 3min, while Bacillus megaterium predominating in samples treated at 400MPa for 1min. At 400MPa for 3min and above, the microbial growth was completely suppressed during at least 90days; however, viable spore-formers were detected by enrichment.  相似文献   

3.
Summary Spoilage and safety of cooked, brined and modified atmosphere packed shrimps were studied at 0, 5, 8, 15 and 25 °C. Shrimps from two sources, cold and warm waters, were brined in a sodium–chloride brine containing benzoic, citric and sorbic acids. Shelf-life was above 7 months at 0 °C but only 4–6 days at 25 °C. Apparent activation energy for the effect of temperature on shelf-life was > 100 kJ mol-1. This pronounced effect of temperature was explained by changes in spoilage microflora at different storage temperatures. Simple and empirical mathematical models for rates of spoilage were developed for the prediction of shelf-life at different temperatures. To evaluate safety, products were challenged with Listeria monocytogenes and spores of Clostridium botulinum . Above 5 °C growth responses of L. monocytogenes followed the square root model with a Tmin-value of +0.2 °C. Cl. botulinum produced toxin at the time of spoilage at 25 °C but only in shrimps with < 3% water-phase salt.  相似文献   

4.
A method to prolong the shelf-life of fresh camel meat, by the use of fresh garlic as an antimicrobial and preservative agent, has been established. Three storage temperatures (room temperature 20–22°C, incubator 12°C and refrigerator 2–3°C) were used in this investigation. Irrespective of storage temperature, treatments with 5, 10 and 15% (by wt.) of fresh garlic segments, ground with fresh lean camel meat, were found to increase the period of shelf-life, two-, three- and more than four-fold, respectively, compared with the corresponding control samples. After 4 days storage at room temperature, 12 days incubation and 28 days refrigeration, it was found that treatments with 15 and 25% garlic resulted i* complete inhibition of microbial growth with no sign of any organoleptic spoilage of the meat. The treated meat samples were fried for 15 min and found to be acceptable in taste and flavour by the local people in Saudi Arabia.  相似文献   

5.
Escherichia coli and Listeria innocua in kiwifruit and pineapple juices were exposed to high hydrostatic pressure (HHP) at 300 MPa for 5 min. Both bacteria showed equal resistance to HHP. Using low (0 degrees C) or sub-zero (-10 degrees C) temperatures instead of room temperature (20 degrees C) during pressurization did not change the effectiveness of HHP treatment on both bacteria in studied juices. Pulse pressure treatment (multiple pulses for a total holding time of 5 min at 300 MPa) instead of continuous (single pulse) treatment had no significant (p>0.05) effect on the microbial inactivation in kiwifruit juice; however, in pineapple juice pulse treatment, especially after 5 pulses, increased the inactivation significantly (p<0.05) for both bacteria. Following storage of pressure-treated (350 MPa, 20 degrees C for 60 s x 5 pulses) juices at 4, 20 and 37 degrees C up to 3 weeks, the level of microbial inactivation further increased and no injury recovery of the bacteria were detected. This work has shown that HHP treatment can be used to inactivate E. coli and L. innocua in kiwifruit and pineapple juices at lower pressure values at room temperature than the conditions used in commercial applications (>400 MPa). However, storage period and temperature should carefully be optimized to increase the safety of HHP treated fruit juices.  相似文献   

6.
In this study, the shelf-life and quality of anchovies brined at different concentrations and stored both at refrigerator and ambient temperature conditions were investigated. Sensory, microbiological and chemical analyses of samples were made during storage trials for up to 150 days in order to investigate their quality. The samples stored at ambient temperature showed poor quality at the end of the storage trial. The best quality was observed with the samples that were brined at 22 and 26% salt concentrations, and stored at 4 ± 1 °C.  相似文献   

7.
The effect of different temperature/time/pressure high hydrostatic pressure (HHP) treatment on quality and shelf life of sea bream were studied. Different high-pressure treatments (at 3, 7, 15 and 25 °C, 5–10 min and 220, 250 and 330 MPa) were tested to establish the best processing conditions for quality of sea bream. The effect of the process on the quality of the sample was examined by colour, trimethylamine nitrogen and thiobarbituric acid number analysis. Based on the results of the parameter, the best combinations of HHP treatments were determined as 3 °C/5 min/250 MPa–15 °C/5 min/250 MPa for sea bream. The effects of this combination treatment on sensory, chemical and microbiological properties of sea bream stored at 4 °C were studied. The results obtained from this study showed that the shelf life of untreated and HHP treated stored in refrigerator, as determined by overall acceptability of sensory and microbiological data, is 15 days for untreated sea bream and 18 days for treated sea bream at 3 °C/5 min/250 MPa and at 15 °C/5 min/250 MPa treated sea bream.  相似文献   

8.
The basic objective of this study was to determine the effect of high hydrostatic pressure (HHP; 220, 250 and 330 MPa), holding time (5 and 10 min) and temperature (7, 15 and 25 °C) on some quality parameters of horse mackerel such as colour changes, thiobarbituric acid (TBA-i) and trimethylamine nitrogen (TMA-N), free amino acid content. HHP increased L * values of horse mackerel. The a * and b * of treated horse mackerel did not change significantly after HHP applications. After, HHP, TBA-i and TMA values of all HHP-treated horse mackerel samples remained unchanged than those of untreated samples. The results obtained from this study showed that the quality of high pressure treated horse mackerel is best preserved at 250 MPa, 7–15 °C for 5 min, 220 MPa, 15–25 °C for 5 min, 250 MPa, 15 °C for 10 min and 330 MPa, 25 °C for 10 min.  相似文献   

9.
The effects of hyperbaric storage (HS, 50–100 MPa) at room temperature (RT) on endogenous and inoculated pathogenic surrogate vegetative bacteria (Escherichia coli, Listeria innocua), pathogenic Salmonella enterica and bacterial spores (Bacillus subtilis) were assessed and compared with conventional refrigeration at atmospheric pressure for 60 days. Milk stored at atmospheric pressure and refrigeration quickly surpassed the acceptable microbiological limit within 7 days of storage, regarding endogenous microbiota, yet 50 MPa/RT slowed down microbial growth, resulting in raw milk spoilage after 28 days, while a significant microbial inactivation occurred under 75–100 MPa (around 4 log units), to counts below 1 log CFU/mL throughout storage, similar to what was observed for B. subtilis endospores. While inoculated microorganisms had a gradually counts reduction in all HS conditions. Results indicate that HS can not only result in the extension of milk shelf-life but is also able to enhance its safety and subsequent quality.Industrial relevanceThis new preservation methodology could be implemented in the dairy farm storage tanks, or during milk transportation for further processing, allowing a better microbial control, than refrigeration. This methodology is very promising, and can improve food products shelf-life with a considerable lower carbon foot-print than refrigeration.  相似文献   

10.
The application of high hydrostatic pressure (HHP) (250 MPa, 35 °C for 15 min) and thermal treatment (80 °C for 1 min) reduced the microbial load of carrot and tomato juices to undetectable levels. Different combinations of HHP did not cause a significant change in the ascorbic acid content of either juice (P > 0.05). Both heat treatments (60 °C for 5–15 min and 80 °C for 1 min) resulted in a significant loss (P < 0.05) in the free‐radical scavenging activity as compared to untreated samples. HHP‐treated juices showed a small loss of antioxidants (below 10%) during storage. The ascorbic acid content of pressurized tomato and carrot juices remained over 70 and 45% after 30 days of storage, respectively. However, heat treatment caused a rapid decrease to 16–20%. Colour changes were minor (ΔE = 10) for pressurised juices but for heat‐pasteurised samples it was more intense and higher as a result of insufficient antioxidant activity. HHP treatment (250 MPa, 35 °C for 15 min) led to a better product with regard to anti‐radical scavenging capacity, ascorbic acid content and sensory properties (colour, pH) of the tomato and carrot juices compared to conventional pasteurisation. Therefore, HHP can be recommended not only for industrial production but also for safe storage of fresh juices, such as tomato and carrot, even at elevated storage temperatures (25 °C). Copyright © 2007 Society of Chemical Industry  相似文献   

11.
The effects of fruit maturation, harvest date, storage temperature, storage period and shelf life, on the concentrations of individual sugars and organic acids in Japanese plums were investigated. During fruit maturation in 'Amber Jewel' plums, sucrose concentration increased significantly from 101 days after full bloom (DAFB) to 1 week after commercial maturity (136 DAFB) with a non-significant change in the concentration of total organic acids and malic acid, the major organic acid. The changes in concentrations of sugars and organic acids during cold storage of 'Amber Jewel' plums harvested on 129 and 136 DAFB appeared to be independent of harvest date. Storage of 'Amber Jewel' plums at 5 °C accelerated the loss of sucrose and increased the concentrations of fructose and glucose from the 4th week of storage compared with those stored at 0 °C. 'Blackamber' plums did not undergo any significant increase in the total and individual sugars during 5 weeks storage and subsequent shelf-life of 8 days at 20 °C. Malic acid concentrations declined during storage from 3 weeks onwards with a further substantial loss during ripening at 20 °C. Maturation, harvest date, storage temperature, storage period and shelf-life affect the concentrations of sugars and organic acids in Japanese plums.  相似文献   

12.
Staphylococcus aureus ATCC6538 was inoculated in skimmed milk, orange juice, and Tris buffer samples. Inoculated samples were subjected to high hydrostatic pressure (HHP) treatments at 700 MPa for 5 min at 4 °C starting temperature with fast, medium, and slow rates of compression and decompression. The objective of this study was to determine the effects of changing rates of compression and decompression on inactivation of S. aureus during HHP processing. Immediate effect of different HHP treatments was not significantly different. However, during subsequent storage in refrigeration, highest microbial inactivation was the result of treatments with fast compression and slow decompression rates in all matrices.  相似文献   

13.
High hydrostatic pressure (HHP) (400 MPa/15 min, 500 MPa/10 min, 600 MPa/5 min at 20 °C) and heat (60 °C/15 min) processing of wheat beers were evaluated by examining their impacts on microorganisms, colloidal haze, flavour, foam stability and shelf‐life prediction during 84 days of storage at 20 °C. The results obtained showed that the microbiological stability of HHP beers was comparable with heat‐treated samples, and the development of both aerobic bacteria and lactic acid bacteria was inhibited for 84 days of storage. The main parameters of the wheat beer, such as ethanol content, original extract, pH, bitterness and viscosity, were scarcely affected by either treatment compared with the control samples; however, heat pasteurization increased the colour value. Heat‐pasteurized beer resulted in an increase in the phenethyl alcohol concentration and a decrease in isoamyl acetate and ethyl acetate levels compared with the HHP samples. These treatments did not affect the amount of 4‐vinylguaiacol and 4‐vinylphenol in the beer. The HHP‐treated beers had higher colloidal haze and foam stability values than the heat‐pasteurized beers. Dynamic light scattering analysis showed that HHP treatments at 500 MPa/10 min resulted in smaller and more uniform particle sizes, which had a positive effect on beer haze stability during storage. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

14.
Four different host-specific lactococcal bacteriophages were subjected to high hydrostatic pressure and heat treatments. Pressure treatments were done at room temperature at 300 and 350 MPa for 5–40 min. Complete inactivation of bacteriophages was observed starting at 350 MPa for 20-min treatment at room temperature. The effect of heat on the bacteriophages was analyzed by heat treatment at 71.7C for predetermined lengths of time (1–5 min). Decrease in bacteriophage number was observed after 3 min of heat treatment at 71.7C. Pressure treatment at 350 MPa/5 min and heat treatment at 71.7C/3 min were both found to be effective for the inactivation of lactococcal bacteriophages. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis indicated that protein profiles of pressure-treated (350 MPa, 25 min) bacteriophages were altered.

PRACTICAL APPLICATIONS


Bacteriophages are still a problem for the production of fermented dairy products, as there has not been a process to eliminate them completely from the fermentation environment. Processes such as pasteurization are not adequate to eliminate bacteriophages. However, new food preservation methods have been developed, one of which is high hydrostatic pressure (HHP) processing. HHP has potential application for the inactivation of viruses. Here, we demonstrate the application of HHP to inactivate the bacteriophages of dairy starter culture Lactococcus in comparison with heat treatment.  相似文献   

15.
The effect of different temperature/time/pressure high hydrostatic pressure (HP) treatment on the quality and shelf life of red mullet were studied. Different high pressure treatments (at 3, 7, 15 and 25 °C, 5 to 10 min and 220, 250 and 330 MPa) were tested to establish the best processing conditions for the quality of red mullet. The effect of the process on the quality of the sample was examined by colour, Trimethylamine nitrogen (TMA-N) and Thiobarbituric acid number (TBA) analysis. Based on the results of the parameters, the best combinations of HP treatments were determined as 220 MPa/5 min/25 °C and 330 MPa/5 min/3 °C for red mullet. The effects of this combination treatment on sensory, chemical and microbiological properties of red mullet stored at 4 °C were studied. The results obtained from this study showed that the shelf life of untreated and HP treated stored at 4 °C, as determined by overall acceptability of sensory and microbiological data, are 12 days for untreated red mullet and 14 days for treated red mullet at 220 MPa for 5 min at 25 °C and 15 days for treated red mullet at 330 MPa for 5 min at 3 °C.Industrial relevanceFresh fish have short shelf life. HP treatment has shown to be an effective method to control pathogen and spoilage microorganisms in fish and fish products. However, high pressure treatment can promote colour and oxidation changes that could modify their sensory characteristics. The main objective of the first part of this study was to detect the best combination among the applied pressure (220, 250 and 330 MPa), temperature (3, 7, 15 and 25 °C) and time (5 and 10 min) combinations. The treatment ranges were chosen according to the unchanging colour, lower TBA value and TMA stability by HP and considering the economical aspects of HP processing. In the second part of the study, HP was applied on the selected samples and a shelf-life study was performed by measuring the changes in the quality parameters, of the samples throughout their storage. The storage conditions were set so as to achieve refrigeration handling (4 °C). Shelf-life estimation was performed according to the data obtained. HP (at 220 MPa for 5 min at 25 °C and at 330 MPa for 5 min at 3 °C) treatment is the most effective treatment for shelf-life extension as compared to non-treated red mullet.  相似文献   

16.
Ripe mangoes 'Tommy Atkins' were exposed to UV-C irradiation for 10 and 20 min, prior to storage for 14 days at 5 or 20 °C and a shelf-life period of 7 days at 20 °C. UV-C-treated fruit maintained better visual appearance than unirradiated controls. UV-C irradiation for 10 min was the most effective regime in suppressing decay symptoms and maintaining firmness during storage at 5 or 20 °C. Such fruit (treated with UV-C for 10 min) showed greater levels of putrescine and spermidine after cold storage than controls and those treated with UV-C for 20 min. Higher levels of sugars and lower levels of organic acids were observed in mangoes treated with UV-C for 20 min. However, the most effective UV-C treatment (10 min) for reducing decay maintained sugar and organic acid levels similar to the controls. No UV-damage was observed on treated fruits after storage. These results indicate that UV-C irradiation could be used as an effective and rapid method to preserve the postharvest life of ripe mangoes without adversely affecting certain quality attributes.  相似文献   

17.
The microbial quality of untreated and pressure-treated carrot juice was compared during storage at 4, 8 and 12 °C. High pressure treatment at 500 MPa and 600 MPa (1 min/20 °C) reduced the total counts by approximately 4 log CFU ml−1 and there was very little growth of the survivors during storage at 4 °C for up to 22 days. Total counts increased during storage of pressure-treated juice at 8 °C and 12 °C but took significantly longer to reach maximum levels compared to the untreated juice. The microflora in the untreated juice consisted predominantly of Gram-negative bacteria, identified as mostly Pantoea spp., Erwinia spp. and Pseudomonas spp. Initially the pressure-treated juice contained low numbers of spore-forming bacteria (Bacillus spp. and Paenibacillus spp.) and Gram-positive cocci; the spore-formers continued to dominate during storage.  相似文献   

18.
SUMMARY— The storage life of fresh, peeled and deveined tropical shrimps at 10—12°C is extended to 10—14 and 18—21 days with 0.15 and 0.25 Mrad, respectively, as against spoilage of unirradiated samples within 4 days. Blanching treatment (steaming for 4 min) with or without brine (3.0% NaCl) extends the storage life up to 30 days at lo—12°C. the former retaining the shell-fish flavor. However, the blanched products develop musty odor and slimy texture during storage; subjected to irradiation (0.15 Mrad) these are devoid of undesirable attributes and are acceptable for 60 and 130 days, respectively, at 10—1°C and 2—4°C. Bacterial counts exceeding 108/g and high levels of TMAN and TVBN concur with spoilage of unirradiated shrimps. In contrast, low levels of TMAN and TVBN, despite high TBC, corroborate with high acceptability of radiation processed shrimps. In blanched as well as in blanched and irradiated shrimps TBC, TMAN and TVBN are low. Samples subjected to blanching only have low acceptability as against the improvement in quality by irradiation. These alterations in storage property have been discussed in the light of shifts in microflora.  相似文献   

19.
The effects of high pressures and thermal pasteurization on the survival of microorganisms, enzyme inactivation and quality changes of guava puree during storage at 4°C were investigated and compared with untreated samples. After treatment at a pressure of 600MPa and 25°C for 15 min, the microorganisms in guava puree were inactivated to less than 10 cfu mL−1 and the product exhibited no change in colour, pectin, cloud and ascorbic acid content as compared with fresh samples. The inactivation of enzymes in guava puree by thermal pasteurization was greater than by high pressures. The microbial count in guava puree reduced to 200 cfu mL−1 and the product showed marked changes in viscosity, turbidity and colour when heated at 88–90°C for 24s. The content of pectin, cloud and ascorbic acid as well as colour in untreated and high pressurized (400MPa) guava puree gradually decreased, whereas these changes were not observed in pasteurized (88–90°C) and high pressurized (6000MPa) puree during storage at 4°C for 60 days. The guava puree treated at 600MPa and 25°C for 15 min retained good quality similar to the freshly extracted puree after storage at 4°C for 40 days.  相似文献   

20.
The effect of high hydrostatic pressure at 500 MPa/10 min (HHP1), 550 MPa/10 min (HHP2) and 600 MPa/5 min (HHP3) on the microbiological, physicochemical, antioxidant and sensory characteristics of a fermented pomegranate (FP) beverage, stored for 42 days (4 ± 1 °C), was evaluated. The FP beverage was also pasteurized at 63 °C/30 min (VAT) and 72 °C/15 s (HTST). The high hydrostatic pressure (HHP) and VAT pasteurized beverages did not show microbial growth (<10 CFU/mL) throughout 42 days of storage. The physicochemical characteristics were not affected (p > 0.05) by HHP or pasteurization. Color of the samples showed significant differences (p ≤ 0.05) in all HHP processed and pasteurized beverages. Antioxidant activity, total phenolic compounds, flavonoids and anthocyanins increased slightly after HHP processing. Antioxidants decreased throughout the storage in all treatments. Both HHP processed and pasteurized beverages were well accepted by average consumers when evaluated using a 9-points hedonic scale.Industrial relevanceThe high hydrostatic pressure (HHP) improves the microbiological, antioxidant and sensorial stability of fermented pomegranate beverages during storage. The HHP is more common for processing fruit juices than for fermented beverages; therefore, it can be expanded to the fermented beverages industry, which could modify the today usual thermal processing methods and, or the addition of preservatives, that are not natural, for delivering high quality and healthier pomegranate fermented beverages to consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号