首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holmes JL  Bachus KN  Bloebaum RD 《Scanning》2000,22(4):243-248
Electron beam interactions with specimens in the scanning electron microscope (SEM) can lead to increased surface temperatures and damage. These changes may have significant consequences in the analysis of bone tissue. An investigation was performed to measure the surface temperature changes associated with the electron beam on a thermocouple with systematic variations in operating conditions. Probe currents, magnifications, and accelerating voltages were incrementally adjusted to measure the temperature changes and to make assessments for determining optimal operating conditions for the SEM in future analyses of bone tissue. Results from this study suggest that thermal effects were minimal at lower accelerating voltages (< 20 kV), lower probe currents (< 10 nA), and lower magnifications, but surface damage may still occur during the analysis of bone tissue.  相似文献   

2.
The vascular endothelial growth factor-C (VEGF-C), a specific lymphangiogenic growth factor, raises new questions and perspectives in studying lymphatic development and regeneration. Wound healing skins in mice were processed for 5'-nucleotidase (5'-Nase) and VEGFR-3 (the receptor of VEGF-C) histochemical staining to distinguish lymphatics from blood capillaries and to analyze lymphangiogenesis. In the wounds of 3-5 days after injury, anti-VEGFR-3 immunopositive signals unevenly appeared in 5'-Nase-positive lymphatic vessels in the subcutaneous tissue. A few small circular and irregular lymphatic-like structures with VEGFR-3 expression scattered in the dermal and subcutaneous tissues. Between days 7 and 15 of the wounds, numerous accumulated vasculatures were stained for 5'-Nase and PECAM-1, extending irregularly along the wound edge. Von Willebrand factor was expressed in the endothelial cells of blood vessels and lymphatics in the subcutaneous tissue. Ultrastructural changes of lymphatic vessels developed at different stages, from lymphatic-like structures to newly formed lymphatic vessels with an extremely thin and indented wall. Endothelial cells of the lymphatic vessel were eventually featured by typical intercellular junctions, which deposited with reaction products of VEGFR-3 and 5'-Nase-cerium but lacked VEGF-C expression. The present findings indicate that VEGF-C-induced lymphangiogenesis occurs from the subcutaneous to the dermis along the wound healing edge, especially in the dermal-subcutaneous transitional area, favorable to growth of regenerating lymphatic vessels.  相似文献   

3.
This article describes the scanning transmission X-ray microscope operated at the National Synchroton Light Source. The application of the instrument to elemental analysis is detailed. In particular, qualitative results on the calcium distribution in human skull tissue are presented.  相似文献   

4.
Journal of Mechanical Science and Technology - The modeling of greenhouse heating and cooling loads at the required operating conditions is important for greenhouse managers or planners. However,...  相似文献   

5.
Thyroid hormones are key regulators of brain differentiation and function. They permeate strongly into lipid membranes. However, a substantial portion of thyroid hormone is retained in the intravascular/extracellular compartments by binding to plasma proteins. In the brain, transthyretin is the most important of these proteins. This transthyretin is synthesized in the epithelial cells of the choroid plexus and exclusively secreted towards the brain. A net movement of thyroid hormones from the blood to the brain ensues. During evolution, transthyretin synthesis in the choroid plexus and the beginnings of a neocortex first appeared at the stage of the stem reptiles. The affinity of transthyretin for thyroxine increased and that for triiodothyronine decreased during evolution. This could augment the importance of deiodination for regulation of metabolism and gene expression by thyroid hormones in the brain. Successive shifts of the splice site at the 5' end of exon 2 of transthyretin precursor mRNA in the 3' direction led to a shortening of the N-terminal sections and to an increase in hydrophilicity of the N-terminal regions of transthyretin. This shift can be explained by a sequence of single base mutations. It could be an example for a molecular mechanism of positive Darwinian evolution. The selection pressure, which led to the expression of the transthyretin gene in the choroid plexus during evolution, might have been the maintenance of thyroid hormone homeostasis in the extracellular compartment of the brain in the presence of the greatly increasing volume of the lipid phase.  相似文献   

6.
Intercellular junctions are fundamental to the interactions between cells. By means of these junctions, the activities of the individual cells that make up tissues are co-ordinated, enabling each tissue system to function as an integrated whole. In this review, the work of the authors on one specific type of junction—the cardiac gap junction—is presented as a case model to illustrate how the application of a range of microscopical methods, as part of a multidisciplinary approach, can help extend our understanding of cell junctions and their functions. In the heart, gap junctions form the low-resistance pathways for rapid impulse conduction and propagation, enabling synchronous stimulation of myocyte contraction. Gap junctions also form pathways for direct intercellular communication, a function of particular importance for morphogenetic signalling during development. The work discussed demonstrates some of the applications of techniques in electron microscopy, immunocytochemistry and confocal scanning laser microscopy to the understanding of the structural basis of the function of gap junctions in the normal adult heart, the developing heart and the diseased heart. Freeze-fracture electron microscopy of heart tissue prepared by rapid freezing techniques, in which excision-related structural damage to the cells is minimized or avoided, makes it possible to deduce the structure of the functioning gap junction in vivo. Gap junctions in hearts that are beating normally in the living animal until the very instant of freezing consist of connexons (transmembrane channels) organized in a quasicrystalline arrangement, not a ‘random’ arrangement as proposed in the original hypothesis on the structural correlates of gap junction function. Alterations in connexon arrangement occur in response to ischaemia and hypoxia, though the relationship of these to gap-junctional permeability is indirect. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera to synthetic peptides matching portions of the sequence of connexin43, the major gap-junctional protein reported in the heart, were raised. The specificity of the antisera was confirmed by dot blotting, Western blotting and by immunogold labelling of isolated gap junctions. One antiserum (that raised to residues 131–142) was found to be particularly effective as a cytochemical probe. An immunofluorescence labelling procedure for use with confocal scanning laser microscopy was developed to enable the three-dimensional precision mapping of gap junctions through thick slices of cardiac tissue. By exploiting the serial optical sectioning ability of the confocal microscope, we have succeeded in (1) elucidating the organization of gap junctions at the intercalated disc, (2) establishing temporal and spatial patterns of gap-junctional protein expression in embryogenesis that correlate with functional differentiation in subsets of cardiac cells, and (3) demonstrating abnormalities of gap-junction distribution and quantity that may contribute to the genesis of arrhythmias in ischaemic heart disease.  相似文献   

7.
Cultured rat fibroblasts were exposed to millimolar concentrations of forty-four non-cationic fluorescent probes, of very varied physico-chemical properties. Mitochondrial staining occurred with nineteen of these probes, nine of which were nominally anionic and ten nominally non-ionic. All nineteen were in fact lipophilic weak acids. Using structural parameters these could be specified numerically as follows: electric charge ≤ 0; log P(less-ionized form) < 0; and pKa ~ 7. In addition to these structural variables, dye concentration and the time of exposure of cells to probes were significant factors for the staining of mitochondria. Accumulation of these compounds can be understood in terms of ion-trapping of hydrophilic salts of lipophilic weak acids, due to the internal pH of respiring mitochondria being higher than the cytosolic pH. As a case example of the application of this approach, the mode of action of many inhibitors of mitochondrial anabolism is discussed in terms of the mechanisms introduced here.  相似文献   

8.
One of the first stages in developing an accurate biomechanical representation of the elbow joint is to model realistically the geometry of the joint. In particular, given the complex anatomy of the articular surfaces, the relationship between surface topography and joint contact must be fully understood in order to model the contact conditions. As the joint articulates, the location and size of the contacts between the mating surfaces change, altering the distribution and magnitude of load transmission. In this paper, a geometric model of the anatomical elbow joint in the coronal plane is described. The contours of the articulating surfaces are represented algebraically by a series of connecting lines and circular arcs. It is shown that the location and size of the contact between the surfaces change significantly due to small changes in the topography of one or more of the mating surfaces. The surface topography-joint contact relationship is modelled for a number of different clinical conditions for the joint. The model is relevant to clinical studies of joint degeneration and to the design of prosthetic components for the elbow joint.  相似文献   

9.
The study of cell-cell and cell-substratum adhesion in vitro is useful for understanding cell behavior in a three-dimensional pattern. We have used dissociated cells (choanocytes represent the main fraction) from the calcareous sponge Clathrina, namely C. cerebrum and C. clathrus, to illustrate our present understanding on three main aspects of cell-cell and cell-substratum adhesion in vitro: (1) cytoskeletal protrusions; (2) cell behaviours on organic substrata; and (3) paths of locomotory sponge cell. Cell locomotion occurs by the extensions of scleropodial and lamellipodial protrusions, by way of actin polymerization. The extent to which cells produce these cytoplasmic processes varies according to the substratum (e.g., collagen, fibronectin, laminin, polylysine). It was found that more cell extensions were produced on collagen substrata, and this led to greater cell movement. Advancing choanocytes are not polarized. Their paths are particularly complicated, showing linear segments, which produce a more efficent cellular translocation, and winding tracts with frequent turns or loops. Small amoeboid cells describe more linear paths with a wide range of speed variation than larger cells. The presence of cell-derived substratum reduces the progressive dispersion of cells and allows cells to encounter one another in such a way that the initial random walking later turns into non-random displacement. Even though cAMP-treated cells exhibit different aggregative tactics, cAMP 10(-8) M remarkably enhances cell encounters and supports the existing information that this cyclic nucleotide represents a signal that affects cell morphology and locomotion. The bulk of data on sponge cell-cell and cell-substratum adhesion has been evaluated by mentioning the significant advances and references concerning studies of other cell systems.  相似文献   

10.
The model proposed in the paper allows the rotational effect to be interpreted and is based on the concept of elastic interaction, which is also present in the end effect. The model is supported by a number of experimental cases regarding dynamometers of different types, whose certificates of calibrations carried out at intervals of several years are available.  相似文献   

11.
A numerical study of a natural convection in a rectangular cavity with the low-Reynoldsnumber differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.  相似文献   

12.
In this study, a new process control agent (PCA) technique called as gradual process control agent technique was developed and the new technique was compared with conventional process control agent technique. In addition, a neural network (ANN) approach was presented for the prediction of effect of gradual process control agent technique on the mechanical milling process. The structural evolution and morphology of powders were investigated using SEM and particle size analyzer techniques. The experimental results were used to train feed forward and back propagation learning algorithm with two hidden layers. The four input parameters in the proposed ANN were the milling time, the gradual PCA content, previous PCA content and gradual PCA content. The particle size was the output obtained from the proposed ANN. By comparing the predicted values with the experimental data it is demonstrated that the ANN is a useful, efficient and reliable method to determine the effect of gradual process control agent technique on the mechanical milling process.  相似文献   

13.
When in use, a tire dissipates energy according to various mechanisms: rolling resistance, viscosity, hysteresis, friction energy, etc. This dissipation of energy contributes to influencing tire temperature, contact conditions and the resulting friction coefficient.This research project deals with viscoelastic and hysteretic mechanisms, and presents an explicit expression of the energy dissipated by tire-road interactions caused by these mechanisms. It is based on the Dahl model with regard to the hysteretic force together with a spring and a frequency variable damping coefficient with regard to the viscoelastic one. The energy expression found in this way can be used in tire thermal models to determine one of the heat flows needed to estimate the contact temperature and to find out the actual friction coefficient to be used in real time tire-road interaction models.Experimental tests were carried out, for longitudinal interaction only, in order to evaluate the effectiveness of the proposed expression by identifying the parameters and validating the results.  相似文献   

14.
In this work, we propose an analytical expression for estimating the byte loss probability at a single server queue with multifractal traffic arrivals. Initially, we address the theory concerning multifractal processes, especially the Hölder exponents of the multifractal traffic traces. Next we focus our attention on the second order statistics of multifractal traffic processes. More specifically, we assume that an exponential model is adequate for representing the variance of the traffic process under different time scale aggregation. Then, we compare the performance of the proposed approach to other relevant approaches. In addition, based on the results of the analysis, we propose a new admission control strategy that takes into account the multifractal traffic characteristics. We compare the proposed admission control strategy to some other widely used admission control methods. The simulation results show that the proposed loss probability estimation method is accurate, and the proposed admission control strategy is robust and efficient.  相似文献   

15.
Although extensive research has been performed on the grooving of hydrodynamic bearings, there is much to be done on the flow interactions near to and in axial grooving. This work was initiated when the pressure boundary conditions were unknown for the case of a journal bearing with multiple axial grooves each being fed by an external lubricant source. This work is a forerunner to a more extensive research programme using journal bearings. A new technique has been devised to calculate the pressure profile across and along an axial groove. There is a strong pressure flow along the groove and Couette and pressure flow in the direction of sliding. Good correlation between experimental results and theoretical predictions for a wide range of operating conditions has been achieved.  相似文献   

16.
This article focuses on the establishment of a cutting force calculation model in terms of nano-scale orthogonal cutting, and investigates the stress–strain distribution of single-crystal copper that occurs in terms of nano cutting. The cutting force that occurs during the nano-scale cutting of single-crystal copper, and also its changes under different situations, can be found in this study. The molecular dynamics (MD) model was proposed to evaluate the displacement components of the atom in any temporary situation on the nano-scale cutting. The atom and lattice were regarded as the node and element, respectively. The shape function concept of the finite element method (FEM) is used to calculate the equivalent strain of the nodal atom and element. The equivalent stress–strain relationship equation was acquired by nano-scale thin-film tensile simulation in this study, and was used to further calculate the equivalent stress that occurs under the equivalent strain. Subsequently, a stress–strain distribution during nano-scale orthogonal cutting can be acquired.  相似文献   

17.
This paper presents a simulation model for a gearbox test rig, in which a range of bearing faults can be implemented. Bearing faults sometimes manifest themselves by their interaction with meshing gears, and to simulate this it is necessary to model a whole system of gears and shafts supported in bearings. This has now been done for an experimental test rig through the incorporation of a time-varying, non-linear stiffness bearing model into a previously developed gear model. The incorporated bearing model is based on Hertzian contact theory, which relates the raceway displacement to the bearing load, and also accounts for the slippage between the elements. It has the capacity to model localised spalls (inner race, outer race and rolling elements), which are discussed in this part of the paper and extended inner and outer race faults (rough surfaces), which are discussed in part II. Even though the whole gearbox has not been modelled in detail, the non-linear time-varying gear-meshing operation is modelled in some detail. Both simulated and experimental localised fault signals (acceleration signals) were subjected to the same diagnostic techniques; namely spectrum comparisons, Spectral Kurtosis (SK) analysis and envelope analysis. The processed simulated signals showed a similar pattern to that observed in their measured counterparts and were found to have a characteristic, referred to in the literature as double pulses, corresponding to entry into and exit from the localised fault. The simulation model will be useful for producing typical fault signals from gearboxes to test new diagnostic algorithms, and possibly prognostic algorithms.  相似文献   

18.
The paper presents the results of experimental determination of the contact parch area of various automobile tires in response to normal loading on the wheel and tire inflation pressure. The data are obtained for test bench conditions by visual processing of tread footprint. The test program covers five tire types of different manufacturers with different rubber blends. The experimental results are used to construct regression dependences and a multipurpose fuzzy model for determination of the contact parch area in response to loading on the wheel and tire inflation pressure.  相似文献   

19.
Fractional order PI and PID controllers are the most common fractional order controllers used in practice. In this paper, a simple analytical method is proposed for tuning the parameters of these controllers. The proposed method is useful in designing fractional order PI and PID controllers for control of complicated fractional order systems. To achieve the goal, at first a reduction technique is presented for approximating complicated fractional order models. Then, based on the obtained reduced models some analytical rules are suggested to determine the parameters of fractional order PI and PID controllers. Finally, numerical results are given to show the efficiency of the proposed tuning algorithm.  相似文献   

20.
Morphology of the antennae of the female workers of the ponerine ant Dinoponera lucida was examined by light and scanning electron microscopy. In several antennomers, we found secretory gland cells of class I and III. Class III gland cells release their secretion through single pores in the antennal surface, whereas class I secretory cells are seen as tall epidermal cells close to the cuticle. Both gland types have weak reaction for total proteins and neutral polysaccharides. Six distinct sensilla types were observed: trichodea, chaetica, campaniform, basiconica, placodea, and coeloconica. The possible sensory functions of these sensilla and the gland functions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号