首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the opioid receptor antagonist naloxone on behavioural responses to the dopamine D1 receptor agonist SKF 38393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride) were assessed in the rat. SKF 38393 (5 mg/kg s.c.) induced grooming and vacuous chewing mouth movements. SKF 38393-induced grooming was dose-dependently attenuated by naloxone (0.375-1.5 mg/kg s.c), while vacuous chewing movements were unaffected. These findings suggest that dopamine D1 receptor agonist-induced grooming is dependent upon opioid systems, while vacuous chewing movements are likely to be mediated via different pathways.  相似文献   

2.
Recent evidence suggests that behavioral supersensitivity to dopamine (DA) agonists observed in chronic neuroleptic-treated animals might be related to changes in synaptic morphology and density. The aim of this study was to test this hypothesis using Western blotting to determine the striatal synaptophysin levels in rats chronically treated with haloperidol followed by sub-acute administration of a DA agonist. Chronic haloperidol treatment (1 mg/kg/day for 21 days) produced an 88% increase in striatal synaptophysin levels and a 73% increase in apomorphine-induced stereotypes. Sub-acute administration of the DA D-1 receptor agonist SKF38393 (10 mg/kg/day for 5 days) or the DA D-2 receptor agonist quinpirole (1 mg/kg/day for 5 days) did not modify the haloperidol-induced increase in striatal synaptophysin levels. However, sub-acute administration of SKF38393 attenuated (62%) haloperidol-induced stereotypies. We conclude that there is no direct relationship between stereotyped behavior and synaptophysin levels indicating that striatal synaptophysin levels are not a good marker of dopaminergic supersensitivity.  相似文献   

3.
Rats with limbic system damage display increases in responsivity to sensory stimulation and changes in the sensitivity to amphetamine, suggesting that their condition may parallel that of human schizophrenia. This experiment examined locomotion and stereotyped behavior in mature, male rats that had received aspirative lesions of the hippocampus, control lesions of the overlying parietal cortex, or were unoperated controls. Locomotion, measured as photocell beam breaks, was recorded during 2- or 3-h test sessions. Behavioral stereotypy was simultaneously rated. Hippocampal lesioned rats exhibited a selective enhancement in locomotion following D-amphetamine (0.0-5.6 mg/kg) when compared to animals in the control groups. Similar results were observed following injections of apomorphine (0.0-0.25 mg/kg), a mixed D1 and D2 agonist. In order to determine if D1 or D2 receptors were involved in this increased locomotion, the D1 agonist SKF 38393 (0.0-15 mg/kg) and the D2 agonist quinpirole (0.0-0.5 mg/kg) were tested alone and in combination. Hippocampal-ablated rats showed significantly increased locomotion only in response to quinpirole, suggesting that these lesion-induced increases were largely mediated by D2 receptors. When both drugs were administered together, SKF 38393 further enhanced the locomotor stimulating effects of quinpirole in hippocampal lesioned rats, indicating a synergistic interaction between D1 and D2 receptors in the modulation of locomotion. These findings provide further evidence of hippocampal modulation of locomotion and suggest that dopaminergic mechanisms in the nucleus accumbens, probably involving changes in receptor sensitivity, are involved. The results are discussed in relation to the functional roles of the nucleus accumbens and in terms of their implications for mental diseases including schizophrenia.  相似文献   

4.
The locomotor stimulatory effects of the dopamine D1 receptor partial agonist SKF 38393 were examined in male C57B1/6J mice. Non-habituated mice showed marked dose-related (3-300 mg/kg, SC) locomotor stimulation. The time-course effect was biphasic at very high doses (100-300 mg/kg), with dose-related locomotor depression followed by dose-related long-term hyperlocomotion. For all doses, locomotor effects were detectable throughout the 4-h test period. To determine whether these effects were mediated by D1 receptor stimulation, effects of SKF 38393 were assessed in combination with behaviorally inactive and active doses (0.1 and 0.2 mg/kg, respectively) of the selective D1 receptor antagonist SCH 39166. Both doses of SCH 39166 attenuated the hyperlocomotion induced by 30 mg/kg of the agonist to a similar degree. However, neither dose was able to reverse either the depressant or the stimulatory effects of 300 mg/kg SKF 38393. These results demonstrate effects of the prototypical D1 agonist previously unobserved, and raise questions concerning the nature of agonist/antagonist interactions at the D1 receptor subtype.  相似文献   

5.
Many studies have used the D1 agonist SKF 38393 to characterize D1 receptor influences on firing rates in basal ganglia nuclei in vivo. However, SKF 38393 is a partial agonist and so may not be ideal for delineating D1 receptor effects. This study characterizes the effects of four full D1 agonists, SKF 82958 (chloro-APB), SKF 81297 (6-chloro-PB), dihydrexidine and A-77636, on the firing rates of midbrain dopamine and globus pallidus neurons. Recordings were done in fully anesthetized or paralyzed, locally anesthetized rats, and drugs were given systemically intravenously. Dihydrexidine, SKF 81297 and A-77636 were free of rate effects on midbrain dopamine neurons (up to 10.2 mg/kg) and also did not antagonize the inhibitory effects of quinpirole. In contrast, SKF 82958 strongly inhibited dopamine cells through activation of D2 autoreceptors (ED50 = 0.70 mg/kg). Of these drugs, SKF 82958 also was the only one to increase pallidal unit firing rates when given alone (at 5.0 but not 1.0 mg/kg); the other compounds appeared to be selective for postsynaptic D1 receptors. The results suggest that SKF 82958 may be more properly classified as a mixed D1/D2 agonist. In addition, all four agonists strongly potentiated the pallidal response to quinpirole, demonstrating a D1 receptor potentiation of D2 receptor effects. The results support the role of D1 receptors in the midbrain and globus pallidus as previously characterized with SKF 38393. The similar actions of partial and full D1 agonists in these systems support evidence for a D1 receptor reserve and possibly an effector system other than adenylate cyclase.  相似文献   

6.
Aging differentially affects receptor function. In the present electrophysiological study we compared neuronal responsiveness to locally applied dopamine D1 and D2 receptor agonist in the striatum of female Fischer 344 rats aged 3 and 26-27 months. In a subgroup of the old rats, the nigrostriatal dopamine bundle was destroyed unilaterally with 6-hydroxydopamine (6-OHDA) to assess receptor plasticity in response to denervation. Spontaneous firing rate of striatal neurons was higher in aged compared to young rats. Higher doses of the D1 agonist SKF 38393 or the D2 agonist quinpirole were required to elicit a 50% change in firing rate in aged compared to young rats. No difference with SKF 38393 or quinpirole was detected between 6-OHDA denervated and control (nonlesioned) striatum in aged rats. Supersensitivity to D2 agonists has been reported following 6-OHDA lesions in young rats. These observations suggest that D2 receptors in aged rat striatum might not be as plastic as in younger rats.  相似文献   

7.
Age-dependent alterations in behavioral and neuronal functioning were assessed in young (2-3 month), middle-aged (12 month), and aged (24 month) Fischer 344 rats treated with the indirect dopamine agonist amphetamine (2.25 or 5 mg/kg), the D1 agonist SKF 38393 (7.5, 15, 30 mg/kg), or the D2 agonist quinpirole (0.3, 1.0, 3.0 mg/kg). Drug-induced changes in activity and stereotypy were measured during a 90-min testing session, with Fos immunohistochemistry being used to assess the neuronal response to dopamine agonist treatment. As expected, aged rats given amphetamine (5 mg/kg) had fewer activity counts and higher stereotypy scores than young rats. Middle-aged rats also had fewer activity counts but were similar in stereotypy scores to young rats. Amphetamine also induced different patterns of Fos immunoreactivity in the neostriatum and nucleus accumbens of young and aged rats, as Fos expression in aged rats exhibited a distinctive dorsal to ventral pattern of decline. In general, SKF 38393 had few age-related actions, although aged rats did show a slight relative increase in stereotypy. In contrast, the D2 agonist quinpirole substantially enhanced the motor activity and Fos expression of young rats, while only modestly affecting aged rats. Hence, these results suggest that the D2 receptor is more vulnerable to the effects of aging than the D1 receptor.  相似文献   

8.
In general, preweanling and adult rats respond similarly when challenged with competitive dopamine (DA) agonists or antagonists. In contrast, results using a noncompetitive antagonist suggest that the D1 and D2 receptor systems of preweanling and adult rats differ in some critical way. To further assess this phenomenon, the behavioral effects of irreversible receptor blockade were assessed across 8 days in NPA (a nonselective DA agonist), quinpirole (a D2 agonist), or SKF 38393 (a D1 agonist) treated 17-day-old rat pups. The irreversible antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) did not block the locomotor activity and rearing of NPA- or quinpirole-treated rat pups, nor did EEDQ reduce SKF 38393-induced grooming. Moreover, pretreatment with EEDQ appeared to potentiate the normal increases in locomotor activity and rearing produced by NPA, but only when D2 receptors were not protected by a previous injection of sulpiride (a D2 antagonist). Taken together, these results are consistent with the presence of large reserves of D1 and D2 receptors in the preweanling rat pup.  相似文献   

9.
Behavioral and biochemical responses to D1 and D2 dopamine (DA) agonists were used to evaluate the participation of striatal peptidergic mechanisms in the motor function alterations that attend chronic neuroleptic treatment. Rats, given haloperidol (1 mg/kg, i.c.) for 21 consecutive days, were randomly allocated to one of the following treatments: the D1 agonist SKF 38393, the D2 agonist quinpirole, their combination or saline. Stereotyped behavior and neuropeptide levels were evaluated after 5 days treatment and 4 days washout. Haloperidol increased most oral behaviors including licking, chewing and biting as well as striatal enkephalin and somatostatin levels. Subsequent treatment with SKF 38393 diminished the haloperidol-induced increase in licking and chewing; quinpirole reduced chewing behavior. The administration of both agonists together decreased chewing and biting. Neither DA agonist alone, nor their combination, reduced the haloperidol-induced increase in enkephalin levels. Both SKF 38393 and quinpirole, when given alone, tended to decrease the haloperidol-induced increase in somatostatin levels; when both D1 and D2 agonists were administered together, somatostatin levels declined significantly. These results suggest that somatostatin- but not enkephalin-containing striatal neurons contribute to the expression of haloperidol-induced stereotypies.  相似文献   

10.
There is good evidence that interference with the mesolimbic dopamine (DA) system results in impaired maternal responding in postpartum female rats. However, whether activation of the mesolimbic DA system is capable of promoting maternal behavior has not been investigated. This study examined whether increasing DA activity in various brain regions of pregnancy-terminated, naive female rats would stimulate the onset of maternal behavior. Experiments 1 and 2 examined the effects of microinjection of various doses (0, 0.2, or 0.5 μg/0.5 μl/side) of a D? DA receptor agonist, SKF 38393, or a D? DA receptor agonist, quinpirole, into the nucleus accumbens (NA) on latency to show full maternal behavior, and Experiment 3 determined the effects of SKF 38393 injection into a control site. Finally, because the medial preoptic area (MPOA) is also important for maternal behavior, receives DA input, and expresses DA receptors, the authors examined whether microinjection of SKF 38393 into MPOA was capable of stimulating the onset of maternal behavior. Results indicated that microinjection of SKF 38393 into either the NA or the MPOA facilitates maternal responding in pregnancy-terminated rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The dopamine D3/D2 receptor agonists 7-OH-DPAT, quinpirole, quinelorane, and PD128907, the mixed dopamine agonist apomorphine, the D2 agonist bromocriptine, and the D1/D5 agonist SKF38393 were examined in models of hypothermia and prepulse inhibition (PPI) in Wistar rats. As dopamine agonist-induced hypothermia has been proposed as a model of D3 receptor function, and dopamine agonists are known to disrupt PPI, drug potencies to induce hypothermia were established and compared with doses necessary to disrupt PPI. 7-OH-DPAT, quinpirole, quinelorane, PD128907, and apomorphine, reduced body temperature and disrupted PPI with a similar rank order of potency (quinelorane > quinpirole = 7-OH-DPAT > PD128907 = apomorphine). Bromocriptine and SKF38393 were ineffective in both models. In a separate study, the dopamine reuptake inhibitors cocaine and GBR 12909 had no effect on PPI. In a final set of studies, the D2/D3 antagonist raclopride blocked both 7-OH-DPAT-induced hypothermia and 7-OH-DPAT-induced PPI disruption. The 5-HT1A antagonist WAY 100,135, and the peripheral D2-like antagonist domperidone had no effect. These findings suggest that the hypothermia and PPI disruptions seen with some of these dopamine agonists may be mediated by central D3 receptors; however, only studies using more selective dopamine receptor ligands can definitively rule out effects at the D2 or D4 receptors.  相似文献   

12.
While self-administration and place conditioning studies have shown that dopamine D2-like receptor agonists produce reward-related learning, the effects of dopamine D1-like receptor agonists remain equivocal. The present study tested three dopamine D1-like receptor agonists for their ability to induce a place preference. Like control rats treated with amphetamine (2.0 mg/kg i.p.), rats treated with SKF 82958 (+/- -6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1-phenyl-1H- 3-benzazepine hydrobromide; 0.05 but not 0.01, 0.025, 0.075, or 0.10 mg/kg s.c. and/or i.p.) during conditioning showed a significant increase in the amount of time spent on the drug-paired side during the drug free test. Neither SKF 81297 (+/- -6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide; 0.25, 0.50, 1.0, 2.0, and 4.0 mg/kg i.p.) nor SKF 77434 (+/- -7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride; 0.20, 1.0, 5.0, and 10.0 mg/kg i.p.) produced place conditioning. Significant increases in locomotion were seen at some doses of all drugs. Results show for the first time that systemic administration of a dopamine D1-like receptor agonist produces a place preference and are consistent with previous findings showing that dopamine D1-like receptor activation produces reward-related learning.  相似文献   

13.
Rats were exposed to a diet containing 100 ppm cadmium chloride or a control diet. At 52 days of exposure, rats were trained to discriminate between saline and 5 mg/kg cocaine injections. After acquisition training, successive substitution tests were conducted using cocaine, the indirect dopamine agonist d-amphetamine, the mixed D?-D? agonist apomorphine, SKF 38393 and SKF 82958 (both preferential D? agonists), quinpirole (a preferential D? agonist), GBR 12909 (a dopamine reuptake inhibitor), procaine (a local anesthetic), and morphine (an opiate). The results showed that cadmium-exposed rats were slower to acquire the saline–cocaine discrimination than controls. Moreover, cadmium contamination reduced substitution when apomorphine, SKF 82958, and GBR 12909 were presented during generalization testing. Also, cadmium exposure blocked tolerance to cocaine that was evident in control rats following 14 days of exposure to 60 mg/kg/day cocaine. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Lamotrigine (3,5-diamino-6-[2,3-dichlorphenyl]-1,2,4-triazine) has been hypothesised to possess antiparkinsonian activity, by inhibiting the release of glutamate from basal ganglia neurones. This study therefore examined the motor effects of lamotrigine in naive and reserpine-treated mice and its interactions with dopaminergic agonists. In normal mice, lamotrigine (5-80 mg/kg i.p.) decreased spontaneous locomotor activity with high doses (> or = 40 mg/kg) causing moderately severe impairment to posture and gait. In mice treated 24 h beforehand with reserpine (5 mg/kg i.p.), lamotrigine (5-40 mg/kg i.p.) had no effect on akinesia by itself and did not alter the locomotion induced with the selective dopamine D1 receptor agonist 2,3,4, 5-tetrahydro-7,8-dihydroxy-1-phenyl-1 H-3-benzazepine hydrochloride (SKF 38393, 30 mg/kg i.p.). By contrast, motor responses to the dopamine D2 receptor-selective agonist N-n-propyl-N-phenylethyl-p-(3-hydroxyphenyl)ethylamine (RU 24213, 5 mg/kg s.c.) and to the dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA, 150 mg/kg i.p. in the presence of benserazide, 100 mg/kg i.p.), were significantly potentiated by 10 and 40 mg/kg i.p. lamotrigine respectively. It is suggested that lamotrigine may enhance the antiakinetic action of L-DOPA in parkinson-like mice by increasing motor responding mediated by dopamine D2 but not dopamine D1 receptors. This interaction profile of lamotrigine with dopamine D1 and D2 receptor mechanisms is opposite to what one sees with antagonists of glutamate receptors.  相似文献   

15.
Caffeine has been reported to induce contralateral rotational behaviour in rats bearing a unilateral 6-hydroxydopamine lesion of the dopaminergic nigrostriatal pathway. In order to define the role of dopamine receptors in the mediation of this behaviour, we have evaluated the influence of previous exposure to a dopamine receptor agonist and the importance of the time elapsed from the 6-hydroxydopamine lesion on the rotational behaviour induced by caffeine. Separate groups of rats lesioned with 6-hydroxydopamine 2 weeks previously were exposed to four administrations of the D1/D2 receptor agonist apomorphine (0.3 mg/kg s.c.) (primed) or vehicle (drug-naive). Three days later, all rats received caffeine (30 mg/kg s.c.). Drug-naive 6-hydroxydopamine-lesioned rats did not rotate in response to caffeine, while rats primed with apomorphine rotate contralaterally in response to caffeine. When apomorphine priming was paired to the same environment (hemispherical bowls) where rats received caffeine, rotational behaviour was significantly higher than that obtained in rats primed in an unpaired environment (cylinders). Repeated priming with the D2/D3 receptor agonist quinpirole (0.2 mg/kg s.c.) induced a totally context-dependent contralateral rotation in response to caffeine, while caffeine contralateral rotation was not dependent from the context after repeated priming with the D1 agonist SKF 38393 [1-phenyl-2,3,4,5-tetrahydro-(1 H)-3-benzazepine-7,8-diol hydrochloride, 3 mg/kg s.c.]. Caffeine-mediated contralateral rotation was also evaluated in rats lesioned with 6-hydroxydopamine 12 weeks previously and exposed to four administrations of apomorphine or vehicle. As for rats repeatedly exposed to vehicle or apomorphine 2 weeks after 6-hydroxydopamine lesioning, caffeine failed to induce contralateral rotation in drug-naive rats, while it did induce a partially context-dependent contralateral rotation in apomorphine-primed rats. Different from rats receiving apomorphine priming 2 weeks after 6-hydroxydopamine lesioning, in 12 week-lesioned rats, caffeine also induced contralateral rotation after one priming with apomorphine (0.3 mg/kg s.c.), a condition which fails to induce context-dependent rotation. Administration of selective antagonists of A1 (8-cyclopentyl-1,3-dipropylxanthine), (DPCPX) or A2A (5-amino-2-(2-furyl)-7-(3-phenylpropyl)-pyrazolo[4,3-e]-1 ,2,4-triazolo[5c]pirimidine), (SCH 58261) adenosine receptors failed to induce contralateral rotation either alone or in combination in 12 week-6-hydroxydopamine-lesioned rats repeatedly primed with apomorphine. All together, the results indicate that: (i) caffeine does not induce any contralateral rotation in drug-naive 6-hydroxydopamine-lesioned rats; (ii) priming with a dopamine agonist enables caffeine to induce contralateral rotation, this rotation is, however, context independent only after priming with a selective D1 agonist; (iii) contralateral rotation in response to caffeine is dependent on the time from the 6-hydroxydopamine lesion; (iv) blockade of A1 and A2A adenosine receptors with selective antagonists does not induce contralateral rotational behaviour in 6-hydroxydopamine-lesioned rats.  相似文献   

16.
Rats were trained to press a bar for hypothalamic stimulation, and a frequency-response function was plotted. Quinpirole (a selective D2 agonist) facilitated self-stimulation when injected alone but failed to show the facilitatory effect when injected either 1 hr before or 1 hr after injection of SCH 23390 (a D1 antagonist). Injection of reserpine followed by α-methyl-p-tyrosine virtually eliminated self-stimulation. Subsequent injection of either SKF 38393 (a D1 agonist) alone or quinpirole alone did not restore self-stimulation, but a combination of quinpirole and SKF 38393 did. Results suggest that a D2 dopamine agonist facilitates the reinforcing effect of brain stimulation only if D1 receptors are activated by endogenous dopamine or by an exogenous agonist. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Nitric oxide (NO) in brain has been implicated in neuronal regulatory processes and in neuropathologies. Previously we showed that NO modified quinpirole-induced yawning, a behavioral measure of dopamine (DA) D3 receptor activation in rats. The aim of this study was to characterize the effect of nitro-L-arginine methyl ester HCl (NAME) and L-arginine HCl on reactivity of rats to the DA D1 receptor agonist SKF 38393 and DA D1 antagonist SCH 23390 in intact and neonatal 6-hydroxydopamine (6-OHDA)-lesioned rats (134 micrograms of base ICV at 3rd day after birth). L-arginine HCl (300 mg/kg i.p.) increased the oral activity response in 6-OHDA-lesioned rats, like SKF 38393, and induced catalepsy in intact control rats, like SCH 23390. In contrast, NAME had no effect on oral activity or catalepsy, but fully attenuated SKF 38393-induced oral activity. These findings indicate that L-arginine HCl has no apparent effect at the DA D1 receptor, but that NAME is effective in attenuating a DA D1 agonist-induced effect. Consequently NO may be an intracellular second messenger for supersensitized receptors associated with DA D1 agonist-induced oral activity.  相似文献   

18.
By using dorsal contacts and pinning to quantify play behavior in juvenile rats, it was found that the D? agonist, quinpirole, reduced both measures of play at doses greater than 0.05 mg/kg. Eticlopride, a D? antagonist, also reduced both measures of play and blocked the reduction caused by quinpirole. The effect of quinpirole on play was largely unaffected by concurrent administration of either a D? agonist (SKF 38393) or a D? antagonist (SCH 23390), suggesting that D? and D? receptors are functionally independent with respect to play behavior. Quinpirole also reduced overall activity, suggesting that the effects on play may not be selective to neural circuitry responsible for play behavior. Although low doses of quinpirole (0.001–0.03 mg/kg) had a tendency to increase pinning, this effect was not very robust. These data suggest that D? dopamine receptors may not have a major role in the control of play behavior in juvenile rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Dopamine receptor-coupled stimulation of inositol phosphate formation has been characterized extensively, but little is known about the diacylglycerol arm of this dual-signaling pathway. This study examined several parameters of cytidine diphosphate-diacylglycerol (CDP-DG) accumulation as an index of agonist-stimulated DG formation. Rat brain slices pre-labeled with 5-[3H]cytidine were incubated with various test agents in the presence of LiCl and accumulated CDP-DG analyzed. Dopamine and SKF38393 significantly and dose-dependently stimulated CDP-DG accumulation. SKF38393 responses were inhibited by neomycin and reversed by myo-inositol or by exclusion of LiCl. Compared to inositol phosphate formation in 2-[3H]inositol-prelabeled slices, the CDP-DG responses were proportionately greater, while the agonist EC50 values were similar between the two assays. The D1-receptor antagonist SCH23390 inhibited SKF38393-mediated responses at 0.1-10 microM concentrations, whereas greater concentrations reversed the inhibition. SKF38393 effects were completely blocked by the DG kinase inhibitor R59022, thus precluding any role for phospholipase-D or de novo phosphatidate synthesis in the dopaminergic response. D609 which inhibits phosphatidylcholine-specific phospholipase-C (PLC), potently inhibited both CDP-DG accumulation and inositol phosphate formation. These findings demonstrate that the selective D1-receptor antagonist SCH23390 is a partial agonist at the D1-like dopamine receptor that couples to phosphoinositide signaling, that dopaminergic facilitation of phosphoinositide signaling is independent of de novo phosphatidate synthesis, and that the widely used enzyme inhibitor, D-609, is probably not selective for phosphatidylcholine-specific PLC in brain slice preparations. The greater sensitivity of the CDP-DG measurement presents this assay as a reliable and possibly superior index of dopamine receptor-coupled PLC activation in intact tissues.  相似文献   

20.
We provide evidence that dopamine receptors differentially modulate tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the mouse striatum. The dopamine D1 receptor family (D1-like) antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1 H-3-benazepine (SCH 23390), elevated aromatic L-amino acid decarboxylase activity and protein content in striatum, as well as the mRNA for the enzyme in midbrain. The dopamine D1-like receptor agonist, (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1 H)-3-benzazepine-7,8-diol (SKF 38393), had no effect on aromatic L-amino acid decarboxylase. The dopamine D1-like drugs had no effect on tyrosine hydroxylase. In contrast, the dopamine D2 receptor family (D2-like) antagonists haloperidol and spiperone elevated both tyrosine hydroxylase and aromatic L-amino acid decarboxylase activities. The increase in aromatic L-amino acid decarboxylase activity was accompanied by elevated enzyme protein content but not mRNA. The dopamine D2-like receptor agonists, bromocriptine, quinpirole and (+/-)-7-hydroxydipropylaminotetralin (7-OH-DPAT), all decreased striatal tyrosine hydroxylase. Under the conditions used, bromocriptine and 7-OH-DPAT, but not quinpirole, decreased aromatic L-amino acid decarboxylase activity of striatum. Both the dopamine D1- and D2-like receptor antagonists enhanced the turnover of striatal dopamine to differing degrees, as judged by the ratio of acid metabolites of dopamine to dopamine. Taken together our results indicate that aromatic L-amino acid decarboxylase can be modulated independently of tyrosine hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号