首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《热处理》2017,(6)
试验用非调质钢为F35MnV、F38MnVS、F40MnVS、F45MnVS及F49MnVS铁素体-珠光体钢和F12Mn2VBS贝氏体钢。对这些钢进行了表面硬化处理试验。结果表明,铁素体-珠光体型非调质钢可采用气体渗氮、离子渗氮和气体氮碳共渗以提高其表面硬度和耐磨性,但贝氏体非调质钢氮碳共渗处理后,其冲击韧度从46.7 J降低到了35.0 J,故不宜采用该工艺进行表面硬化。此外,F40MnVS钢的高频感应淬硬层表面硬度和硬化层深度与45钢的基本相同,经渗氮处理的F35MnV和F40MnVS钢渗层的化合物层比40Cr、45和38CrMoAlA钢的薄,而扩散层较厚者厚,表面硬度比40Cr、45钢高,比38CrMoAlA钢低。经气体氮碳共渗的非调质钢具有良好的综合力学性能。  相似文献   

2.
为提高热作模具钢4CrSMoSiV1钢的耐磨性和热疲劳性能,对其进行氮碳共渗处理。试验表明,对于4Cr5MoSiV1钢,采用NH3和CO2作渗剂进行氮碳共渗,产品的质量比采用其他氮碳共渗工艺处理的更稳定,渗层表面硬度与气体渗氮层相接近。  相似文献   

3.
研究了不同温度对AerMet100钢渗氮层和氮碳共渗层的显微组织、表面硬度、渗层截面硬度梯度以及耐磨性的影响,并考察了渗层的磨损机理。结果表明,氮碳共渗层相较于渗氮层表面生成的化合物更加细小,表面更加平整光滑;离子渗氮、离子氮碳共渗处理都可显著提高AerMet100钢的表面硬度;随着温度的增加,共渗层厚度也明显增加;氮碳共渗层比渗氮层具有更低的摩擦因数,在共渗温度为480 ℃时氮碳共渗试样具有最低摩擦因数和磨损率,表现出最佳的耐磨性。渗氮层的磨损机理为氧化磨损和表面疲劳磨损,氮碳共渗层的磨损机理为氧化磨损、磨粒磨损以及表面疲劳磨损。  相似文献   

4.
本文综述了柴油机 45钢齿轮经气体氮碳共渗工艺处理后的组织性能。结果表明 ,用5 70℃× 2 .5h的气体氮碳共渗 ,可使齿轮获得 0 .2 5mm的化合物层和扩散层 ,表面硬度可达5 0 0HV0 .1,且畸变量小、寿命高。  相似文献   

5.
38CrMoAlA、40Cr钢经不同渗氮工艺处理后的性能研究   总被引:3,自引:2,他引:3  
研究了38CrMoAlA和40Cr钢经气体渗氮、气体氮碳共渗、离子渗氮处理后渗氮层的组织、硬度、摩擦磨损和腐蚀性能。试验结果表明,38CrMoAlA钢渗氮层的硬度及在3.5%NaCl溶液中的耐蚀性能高于40Cr钢,但抗摩擦磨损性能不如40Cr钢。依气体渗氮、气体氮碳共渗到离子渗氮的顺序,渗氮层的抗磨损性能逐次提高,但抗腐蚀能力逐次降低。从钢的化学成分、渗氮层的硬度和韧性出发,对38CrMoAlA和40Cr钢渗氮层的性能差异进行了分析与总结。  相似文献   

6.
气体软氮化是以渗氮为主的低温氮碳共渗,钢表面渗入氮原子的同时,还有少量的碳原子渗入而形成极其细小的碳化物,碳化物作为媒介可促进渗氮。由于该工艺处理温度低,时间短,所以工件变形小,脆性低。综述了以提高表面硬度、抑制表层脆性、高温短时等为主的气体软氮化工艺的发展状况,分别从稀土催渗、多元共渗、周期循环渗氮、可控气氛渗氮和奥氏体软氮化等5个方面阐述了气体软氮化渗层性能的影响机理和研究现状,并介绍了35钢增压喷丸表面纳米化对气体软氮化过程的影响,展望了表面纳米化用于气体软氮化的发展前景。  相似文献   

7.
采用金相分析、显微硬度测试和防锈性湿热试验等方法对比研究了W6Mo5Cr4V2高速钢经氧氮共渗和渗氮后氧化处理的组织与性能.结果表明,W6Mo5Cr4V2高速钢经氧氮共渗和渗氮后氧化处理都可获得具有化合物层和扩散层的渗层组织;氧氮共渗层的硬度明显高于普通气体渗氮,而渗氮后氧化的渗层硬度与普通气体渗氮相差不大;在选择合适通空气量和后氧化温度的条件下,氧氮共渗和渗氮后氧化处理都可获得优于普通气体渗氮的防锈性能,其中以30%(vol.)空气量氧氮共渗试样表面的防锈性能最好,其次是渗氮 350 ℃后氧化处理的试样.  相似文献   

8.
38CrMoAl钢循环等离子氮碳氧硫共渗工艺的研究   总被引:1,自引:0,他引:1  
对38CrMoA l钢进行了常规等离子渗氮、循环等离子渗氮以及循环等离子氮碳氧硫共渗处理,研究这几种工艺对表面硬度、渗层组织、硬度梯度的影响。结果表明:循环等离子氮碳氧硫共渗有利于形成共渗元素进一步扩散的通道,加速共渗元素的渗入;综合表面硬度和渗层厚度,循环等离子氮碳氧硫共渗工艺明显优于常规等离子渗氮和循环等离子渗氮。  相似文献   

9.
对38CrMoAl钢进行碳氮共渗、氮碳共渗和脉冲真空渗氮处理,研究了表面改性后钢.的显微组织、表面相结构、硬度、耐磨性和耐腐蚀性能.结果表明,碳氮共渗试样表面组织为回火马氏体;氮碳共渗试样表面组织为Fe24N10化合物;脉冲真空渗氮试样表面组织为Fe2_3N化合物.脉冲真空渗氮试样的表面硬度最高(1026 HV),磨损...  相似文献   

10.
为了探讨碳在铁素体氮碳共修中的作用,采用相同温度和时间进行铁素体氮碳共渗和短时渗氮试验。然后进行金相观察和显微硬度测定、耐磨试验、弯曲试验和扭转试验。试验结果与传统的观点相反。铁素体氮碳共渗的一系列优点并非是碳和氮的同时渗入而是由于形成厚度恰当的化合物层。碳并未表现出“加速渗氮”作用,反而明显降低渗层韧性。对于中碳以上的碳钢和合金钢,在渗氮的同时渗入碳并未进一步提高渗层硬度和耐磨性,因此,除了低碳钢经铁素体氮碳共渗后提高化合物层耐磨性外,短时渗氮可广泛替代铁素体氮碳共渗工艺,从根本上解决铁素体氮碳共渗的环境污染。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号