首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The zebrafish locus one-eyed pinhead (oep) is essential for the formation of anterior axial mesoderm, endoderm and ventral neuroectoderm. At the beginning of gastrulation anterior axial mesoderm cells form the prechordal plate and express goosecoid (gsc) in wild-type embryos. In oep mutants the prechordal plate does not form and gsc expression is not maintained. Exposure to lithium, a dorsalizing agent, leads to the ectopic induction and maintenance of gsc expression in wild-type embryos. Lithium treatment of oep mutants still leads to ectopic gsc induction but not maintenance, suggesting that oep acts downstream of inducers of dorsal mesoderm. In genetic mosaics, wild-type cells are capable of forming anterior axial mesoderm in oep embryos, suggesting that oep is required in prospective anterior axial mesoderm cells before gastrulation. The oep gene is also essential for endoderm formation and the early development of ventral neuroectoderm, including the floor plate. The loss of endoderm is already manifest during gastrulation by the absence of axial-expressing cells in the hypoblast of oep mutants. These findings suggest that oep is also required in lateral and ventral regions of the gastrula margin. The sonic hedgehog (shh).gene is expressed in the notochord of oep animals. Therefore, the impaired floor plate development in oep mutants is not caused by the absence of the floor plate inducer shh. This suggests that oep is required downstream or in parallel to shh signaling. The ventral region of the forebrain is also absent in oep mutants, leading to severe cyclopia. In contrast, anterior-posterior brain patterning appears largely unaffected, suggesting that underlying prechordal plate is not required for anterior-posterior pattern formation but might be involved in dorsoventral brain patterning. To test if oep has a wider, partially redundant role, we constructed double mutants with two other zebrafish loci essential for patterning during gastrulation. Double mutants with floating head, the zebrafish Xnot homologue, display enhanced floor plate and adaxial muscle phenotypes. Double mutants with no tail (ntl), the zebrafish homologue of the mouse Brachyury locus, display severe defects in midline and mesoderm formation including absence of most of the somitic mesoderm. These results reveal a redundant function of oep and ntl in mesoderm formation. Our data suggest that both oep and ntl act in the blastoderm margin to specify mesendodermal cell fates.  相似文献   

3.
Signals originating from tissues surrounding somites are involved in mediolateral and dorsoventral patterning of somites and in the differentiation of the myotome. Wnt-1 and Wnt-3a, which encode members of the Wnt family of cystein-rich secreted signaling molecules, are coexpressed at the dorsal midline of the developing neural tube, an area adjacent to the dorsomedial portion of the somite. Several lines of evidence indicate that Wnt-1 and Wnt-3a have the ability to induce the development of the medial and dorsal portion of somites, as well as to induce myogenesis. To address whether these Wnt signalings are really essential for the development of somites during normal embryogenesis, we investigated the development of somites in mouse embryos lacking both Wnt-1 and Wnt-3a. Here we demonstrate that the medial compartment of the dermomyotome is not formed and the expression of a lateral dermomyotome marker gene, Sim-1, is expanded more medially in the absence of these Wnt signalings. In addition, the expression of a myogenic gene, Myf-5, is decreased at 9.5 days post coitum whereas the level of expression of a number of myogenic genes in the later stage appeared normal. These results indicate that Wnt-1 and Wnt-3a signalings actually regulate the formation of the medial compartment of the dermomyotome and the early part of myogenesis.  相似文献   

4.
5.
Tropomyosin is an actin-associated cytoskeletal protein expressed in muscle and non-muscle cells. There are several tropomyosin isoforms, and their cellular expression is known to be associated with transformation events caused by retroviral infection and chemical mutagens. We found that expression of a low-molecular weight tropomyosin isoform, TM5/TM30nm, was higher in a high-metastatic B16 mouse melanoma cell line, B16-F10, than in B16-F1, a low-metastatic mouse melanoma cell line. In order to determine whether this elevated level of TM5/TM30nm plays a role in malignant phenotype, B16-F10 cells were transfected with recombinant DNA containing antisense rat TM5/TM30nm cDNA linked to the human metallothioneinIIa promoter, which is inducible by heavy metals such as zinc and cadmium. When the stably transfected clones were treated with ZnSO4, decreased expression of TM5/TM30nm and reduction in cell motility, which is thought to be an indicator of cellular malignancy were observed. These findings suggest that TM5/TM30nm plays a fundamental role in regulating cell motility, which is essential for metastasis and invasion of tumor cells.  相似文献   

6.
7.
8.
The nucleus retroambiguus in the cat has been shown to receive strong projections from the periaqueductal gray and to send fibres to distinct motoneuronal cell groups in brainstem and spinal cord. The nucleus retroambiguus plays a role in the production of vocalization and possibly copulatory (lordosis and mounting) behaviour. The question arises of whether a periaqueductal gray nucleus retroambiguus-spinal cord projection also exists in the rat. In the present study, using the retrograde wheatgerm agglutinin-horseradish peroxidase tracing technique, the nucleus retroambiguus was defined as the area in the caudal medulla oblongata (1.0-2.0 mm caudal to the obex) which sends its fibres mainly through the contralateral spinal cord. Further retrograde tracing experiments demonstrated that a relatively large number of neurons in the lateral and ventral periaqueductal gray and immediately adjacent tegmentum projects to the caudal medullary lateral tegmentum. Anterograde wheatgerm agglutinin-horseradish peroxidase tracing studies finally showed that neurons in the lateral periaqueductal gray and immediately adjoining tegmentum project specifically to the nucleus retroambiguus and not to the lateral tegmentum in general, which seems to be the case for the neurons in the ventral periaqueductal gray. The results indicate that in the rat a periaqueductal gray nucleus retroambiguus spinal cord projection also exists, which may be of crucial importance for the study of the anatomical and physiological framework of respiration, vocalization, and female and male reproductive behaviour in this animal.  相似文献   

9.
Development of the vertebrate inner ear begins during gastrulation with induction of the otic placode. Several embryonic tissues, including cephalic mesendoderm, notochord, and hindbrain, have been implicated as potential sources of otic-inducing signals. However, the relative contributions of these tissues have not been determined, nor have any genes affecting placode induction been identified. To address these issues, we analyzed otic placode induction in zebrafish mutants that are deficient in prospective otic-inducing tissues. Otic development was monitored by examining mutant embryos for morphological changes and, in some cases, by visualizing expression patterns of dlx-3 or pax-2.1 in preotic cells several hours before otic placode formation. In cyclops (cyc-) mutants, which develop with a partial deficiency of prechordal mesendoderm, otic induction is delayed by up to 1 h. In one-eyed pinhead (oep-) mutants, which are more completely deficient in prechordal mesendoderm, otic induction is delayed by 1.5 h, and morphology of the otic vesicles is abnormal. Expression of marker genes in other regions of the neural plate is normal, suggesting that ablation of prechordal mesendoderm selectively inhibits otic induction. In contrast, the timing and morphology of otic development is not affected by mutations in no tail (ntl) or floating head (flh), which prevent notochord differentiation. Similarly, a mutation in valentino (val), which blocks early differentiation of rhombomeres 5 and 6 in the hindbrain, does not delay otic induction, although subsequent patterning of the otic vesicle is impaired. To test whether inductive signals from one tissue can compensate for loss of another, we generated double or triple mutants with various combinations of the above mutations. In none of the multiple mutants do the flh or val mutations exacerbate delays in placode induction, although val does contribute additively to defects in subsequent patterning of the otic vesicle. In contrast, mutants homozygous for both oep and ntl, which interact synergistically to disrupt differentiation of cephalic and axial mesendoderm, show a delay in otic development of about 3 h. These data suggest that cephalic mesendoderm, including prechordal mesendoderm and anterior paraxial mesendoderm, provides the first otic-inducing signals during gastrulation, whereas chordamesoderm plays no discernible role in this process. Because val- mutants are deficient for only a portion of the hindbrain, we cannot rule out a role for that tissue in otic placode induction. However, if the hindbrain does provide otic-inducing signals, they apparently differ quantitatively or qualitatively from the signals required for vesicle patterning, as val disrupts only the latter.  相似文献   

10.
11.
12.
Mesoderm formation is a hallmark of vertebrate gastrulation and, at the same time, one of the prime examples for epithelio-mesenchymal transformation. Recent advances in experimental embryology and molecular biology have clarified the role of growth factors and genes in this process; however, its microscopic anatomy in higher vertebrates is still far from clear. Therefore, the present study describes the morphology of mesoderm formation in the rabbit embryo, a species which may be representative for both the avian and the mammalian embryo in this respect. Serial semithin sections were correlated with topographical landmarks in surface views of embryonic discs at 6.4, 6.5, and 6.6 days post conceptionem, and selected semithin sections were reembedded for ultrastructural analysis. Mesoderm cells are shown to be generated by ingression of bottle-shaped epiblast cells in the area of the posterior node and the primitive streak. Here, basal endocytotic pits and absence or discontinuity of the basal lamina are taken as suggestive evidence for specific removal of extracellular matrix material. Within the bottle-shaped cells most organelles are concentrated in a narrow apical neck which will subsequently constitute the 'trailing end' of the ingressing mesoderm cells. These features support the assumption that most principles of epithelio-mesenchymal transformation seen during primary mesenchyme formation in the sea urchin also apply to mesoderm formation in vertebrates. However, transient tripartite zonula adherens-type junctions are formed apically between ingressing mesoderm cells and the neighboring epiblast cells. They are interpreted here as being responsible for maintaining supracellular integrity of the embryonic disc during the shedding of mesoderm cells in the amniote embryo.  相似文献   

13.
BACKGROUND: The Na+,K+-adenosine triphosphatase is a ubiquitous enzyme system that maintains the ion gradient across the plasma membrane of a variety of cell types, including cells in the central nervous system. We investigated the antinociceptive effect of intrathecally administered ouabain and examined its potential interaction with spinal morphine and lidocaine. METHODS: Using rats chronically implanted with lumbar intrathecal catheters, the ability of intrathecally administered ouabain, morphine, and lidocaine and of mixtures of ouabain-morphine and ouabain-lidocaine to alter tail-flick latency was examined. To characterize any interactions, isobolographic analysis was performed. The effects of pretreatment with intrathecally administered atropine or naloxone also were tested. RESULTS: Intrathecally administered ouabain (0.1-5.0 microg), morphine (0.2-10.0 microg), and lidocaine (25-300 microg) given alone produced significant dose- and time-dependent antinociception, but systemic administration of ouabain did not produce such an effect. The median effective dose (ED50) values for intrathecally administered ouabain, morphine, and lidocaine were 2.3, 5.0, and 227.0 microg, respectively. Isobolographic analysis exhibited a synergistic interaction after the coadministration of ouabain and morphine. With ouabain and lidocaine, there was no such evidence of synergism. Intrathecally administered atropine, but not naloxone, completely blocked the antinociceptive effect of ouabain and attenuated its interaction with spinally administered morphine. CONCLUSIONS: Intrathecally administered ouabain produces antinociception, at least in part, via an enhancement of cholinergic transmission in the spinal nociceptive processing system. The results of the interaction of ouabain with morphine and lidocaine suggest that modulation of Na+-,K+-electrochemical gradients and thus subsequent release of neurotransmitters in the spinal cord are likely to play important roles in the spinal antinociceptive effect of intrathecally administered ouabain.  相似文献   

14.
GABA (gamma-aminobutyric acid) is the main inhibitory neurotransmitter in the mammalian central nervous system, where it exerts its effects through ionotropic (GABA(A/C)) receptors to produce fast synaptic inhibition and metabotropic (GABA(B)) receptors to produce slow, prolonged inhibitory signals. The gene encoding a GABA(B) receptor (GABA(B)R1) has been cloned; however, when expressed in mammalian cells this receptor is retained as an immature glycoprotein on intracellular membranes and exhibits low affinity for agonists compared with the endogenous receptor on brain membranes. Here we report the cloning of a complementary DNA encoding a new subtype of the GABAB receptor (GABA(B)R2), which we identified by mining expressed-sequence-tag databases. Yeast two-hybrid screening showed that this new GABA(B)R2-receptor subtype forms heterodimers with GABA(B)R1 through an interaction at their intracellular carboxy-terminal tails. Upon expression with GABA(B)R2 in HEK293T cells, GABA(B)R1 is terminally glycosylated and expressed at the cell surface. Co-expression of the two receptors produces a fully functional GABA(B) receptor at the cell surface; this receptor binds GABA with a high affinity equivalent to that of the endogenous brain receptor. These results indicate that, in vivo, functional brain GABA(B) receptors may be heterodimers composed of GABA(B)R1 and GABA(B)R2.  相似文献   

15.
16.
Receptor-mediated endocytosis via clathrin-coated vesicles has been extensively studied and, while many of the protein players have been identified, much remains unknown about the regulation of coat assembly and the mechanisms that drive vesicle formation [1]. Some components of the endocytic machinery interact with inositol polyphosphates and inositol lipids in vitro, implying a role for phosphatidylinositols in vivo [2] [3]. Specifically, the adaptor protein complex AP2 binds phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), PtdIns(3)P, PtdIns(3,4,5)P3 and inositol phosphates. Phosphatidylinositol binding regulates AP2 self-assembly and the interactions of AP2 complexes with clathrin and with peptides containing endocytic motifs [4] [5]. The GTPase dynamin contains a pleckstrin homology (PH) domain that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to regulate GTPase activity in vitro [6] [7]. However, no direct evidence for the involvement of phosphatidylinositols in clathrin-mediated endocytosis exists to date. Using well-characterized PH domains as high affinity and high specificity probes in combination with a perforated cell assay that reconstitutes coated vesicle formation, we provide the first direct evidence that PtdIns(4,5)P2 is required for both early and late events in endocytic coated vesicle formation.  相似文献   

17.
[Correction Notice: An erratum for this article was reported in Vol 48(1) of Canadian Journal of Experimental Psychology (see record 2007-10228-001). In Table 1, an author's error caused the digits in the Related-Unfamiliar condition to be transposed. The correct table is presented in this erratum.] Tested the assumptions that (1) only whole word orthographic knowledge can produce priming and (2) it is automatic. Two experiments with 20 adult Japanese readers were conducted in the context of reading Japanese Kana. Results show that, taken alone, neither the presence nor the absence of priming effects in oral reading permits an inference as to whether the addressed or assembled routine is used. Converging operations that do permit such an inference are reported. The data support the view that (1) components of the word recognition system operate interactively such that use of the assembled routine yields priming under certain conditions and (2) normal readers of a shallow orthography use a nonsemantic, whole-word pathway to name words. (French abstract) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Beef eye anterior chambers were perfused with media containing radiolabeled glycogen precursors. Incorporation of 14C from 1-alanine-U-14C into corneal epithelium glycogen suggested the presence of a gluconeogenic pathway in the eye. Failure to isolate radioactive glucose from 1-alanine-U-14C-containing perfusate after passage through the anterior chamber strongly suggests a corneal site for this pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号