首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceria (CeO2) and rare-earth modified ceria (CeReOx with Re = La3+, Pr3+/4+, Sm3+, Y3+) supports and Pt impregnated supports are studied for the soot oxidation under a loose contact with the catalyst with the feed gas, containing NO + O2. The catalysts are characterised by XRD, H2-TPR, DRIFT and Raman spectroscopy. Among the single component oxides, CeO2 is significantly more active compared with the other lanthanide oxides used in this study. Doping CeO2 with Pr3+/4+ and La3+ improved, however, the soot oxidation activity of the resulting solid solutions. This improvement is correlated with the surface area in the case of CeLaOx and to the surface area and redox properties of CePrOx catalyst. The NO conversion to NO2 over these catalysts is responsible for the soot oxidation activity. If the activity per unit surface area is compared CePrOx is the most active one. This indicates that though La3+ can stabilise the surface area of the catalyst in fact it decreases the soot oxidation activity of Ce4+. The lattice oxygen participates in NO conversion to NO2 and the rate of this lattice oxygen transfer is much faster on CePrOx. In general, the improvement of the soot oxidation is observed over the Pt impregnated CeO2 and CeReOx catalysts, and can be correlated to the presence of Pt°. The surface reduction of the supports in the presence of Pt occurred below 100 °C. The surface redox properties of the support in the Pt catalysts do not have a significant role in the NO to NO2 conversion. In spite of the lower surface area, the Pt/CeYOx and Pt/CeO2 catalysts are found to be more active due to larger Pt crystal sizes. The presence of Pt also improved the CO conversion to CO2 over these catalysts. The activation energy for the soot oxidation with NO + O2 is found to be around 50 kJ/mol.  相似文献   

2.
CeO2 and CeReOx_y catalysts are prepared by the calcination at different temperatures (y = 500–1000 °C) and having a different composition (Re = La3+ or Pr3+/4+, 0–90 wt.%). The catalysts are characterised by XRD, H2-TPR, Raman, and BET surface area. The soot oxidation is studied with O2 and NO + O2 in the tight and loose contact conditions, respectively. CeO2 sinters between 800–900 °C due to a grain growth, leading to an increased crystallite size and a decreased BET surface area. La3+ or Pr3+/4+ hinders the grain growth of CeO2 and, thereby, improving the surface catalytic properties. Using O2 as an oxidant, an improved soot oxidation is observed over CeLaOx_y and CePrOx_y in the whole dopant weight loading and calcination temperature range studied, compared with CeO2. Using NO + O2, the soot conversion decreased over CeLaOx_y catalysts calcined below 800 °C compared with the soot oxidation over CeO2_y. CePrOx_y, on the other hand, showed a superior soot oxidation activity in the whole composition and calcination temperature range using NO + O2. The improvement in the soot oxidation activity over the various catalysts with O2 can be explained based on an improvement in the external surface area. The superior soot oxidation activity of CePrOx_y with NO + O2 is explained by the changes in the redox properties of the catalyst as well as surface area. CePrOx_y, having 50 wt.% of dopant, is found to be the best catalyst due to synergism between cerium and praseodymium compared to pure components. NO into NO2 oxidation activity, that determines soot oxidation activity, is improved over all CePrOx catalysts.  相似文献   

3.
Pt supported on CeO2 and 10 wt.% La3+-doped CeO2 catalysts have been prepared, characterised and tested for soot oxidation by O2 in TGA. The reaction mechanism has been studied in a TAP reactor with labelled O2. Isotopic oxygen exchange between molecular O2 and ‘O’ on the support/catalyst was observed and soot oxidation is being carried out by lattice oxygen. TAP studies further show that Pt improves O2 adsorption and, therefore, 5 wt.% Pt-containing catalysts are more active for soot oxidation than the counterpart supports. In addition, CeO2 doping by La3+ leads to an improved support, since La3+ stabilises the structure of CeO2 when calcined at high temperature (1000 °C) and minimises sintering. In addition, La3+ improves the Ce4+/Ce3+ reduction as deduced from H2-TPR experiments and favours oxygen mobility into the lattice. A synergetic effect of Pt and La3+ is observed, Pt-containing La3+-doped CeO2 being the most active catalyst for soot oxidation by O2 among the samples studied.  相似文献   

4.
This paper reports results of studies on structure and activity in soot combustion of nanocrystalline CeO2 and CeLnOx mixed oxides (Ln = Pr, Tb, Lu, Ce/Ln atomic ratios 5/1). Nano-sized (4–5 nm) oxides with narrow size distribution were prepared by a microemulsion method W/O. Microstructure, morphology and reductivity of the oxides annealed up to 950 °C in O2 and H2 were analyzed by HRTEM, XRD, FT-IR, Raman spectroscopy and H2-TPR. Obtained mixed oxides had fluorite structure of CeO2 and all exhibited improved resistance against crystal growth in O2, but only CeLuOx behaved better than CeO2 in hydrogen.

The catalytic activity of CeO2, CeLnOx and physical mixtures of CeO2 + Ln2O3 in a model soot oxidation by air was studied in “tight contact” mode by using thermogravimetry. Half oxidation temperature T1/2 for soot oxidation catalysed by nano-sized CeO2 and CeLnOx was similar and ca. 100 °C lower than non-catalysed oxidation. However, the mixed oxides were much more active during successive catalytic cycles, due to better resistance to sintering. Physical mixtures of nanooxides (CeO2 + Ln2O3) showed exceptionally high initial activity in soot oxidation (decrease in T1/2 by ca. 200 °C) but degraded strongly in successive oxidation cycles. The high initial activity was due to the synergetic effect of nitrate groups present in highly disordered surface of nanocrystalline Ln2O3 and enhanced reductivity of nanocrystalline CeO2.  相似文献   


5.
MnOx–CeO2 mixed oxides prepared by sol–gel method, coprecipitation method and modified coprecipitation method were investigated for the complete oxidation of formaldehyde. Structure analysis by H2-TPR and XPS revealed that there were more Mn4+ species and richer lattice oxygen on the surface of the catalyst prepared by the modified coprecipitation method than those of the catalysts prepared by sol–gel and coprecipitation methods, resulting in much higher catalytic activity toward complete oxidation of formaldehyde. The effect of calcination temperature on the structural features and catalytic behavior of the MnOx–CeO2 mixed oxides prepared by the modified coprecipitation was further examined, and the catalyst calcined at 773 K showed 100% formaldehyde conversion at a temperature as low as 373 K. For the samples calcined below 773 K, no any diffraction peak corresponding to manganese oxides could be detected by XRD measurement due to the formation of MnOx–CeO2 solid solution. While the diffraction peaks corresponding to MnO2 phase in the samples calcined above 773 K were clearly observed, indicating the occurrence of phase segregation between MnO2 and CeO2. Accordingly, it was supposed that the strong interaction between MnOx and CeO2, which depends on the preparation route and the calcination temperature, played a crucial role in determining the catalytic activity toward the complete oxidation of formaldehyde.  相似文献   

6.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

7.
Micro-channel plates with dimension of 1 mm × 0.3 mm × 48 mm were prepared by chemical etching of stainless steel plates followed by wash coating of CeO2 and Al2O3 on the channels. After coating the support on the plate, Pt, Co, and Cu were added to the plate by incipient wetness method. Reaction experiments of a single reactor showed that the micro-channel reactor coated with CuO/CeO2 catalyst was highly selective for CO oxidation while the one coated with Pt-Co/Al2O3 catalyst was highly active for CO oxidation. The 7-layered reactors coated with two different catalysts were prepared by laser welding and the performances of each reactor were tested in large scale of PROX conditions. The multi-layered reactor coated with Pt-Co/Al2O3 catalyst was highly active for PROX and the outlet concentration of CO gradually increased with the O2/CO ratio due to the oxidation of H2 which maintained the reactor temperature. The multi-layered reactor coated with CuO/CeO2 showed lower catalytic activity than that coated with Pt catalyst, but its selectivity was not changed with the increase of O2/CO ratios due to the high selectivity. In order to combine advantages (high activity and high selectivity) of the two individual catalysts (Pt-Co/Al2O3, CuO/CeO2), a serial reactor was prepared by connecting the two multi-layered micro-channel reactors with different catalysts. The prepared serial reactor exhibited excellent performance for PROX.  相似文献   

8.
This study addresses the catalytic reaction of NOx and soot into N2 and CO2 under O2-rich conditions. To elucidate the mechanism of the soot/NOx/O2 reaction and particularly the role of the catalyst -Fe2O3 is used as model sample. Furthermore, a series of examinations is also made with pure soot for reference purposes. Temperature programmed oxidation and transient experiments in which the soot/O2 and soot/NO reaction are temporally separated show that the NO reduction occurs on the soot surface without direct participation of the Fe2O3 catalyst. The first reaction step is the formation of CC(O) groups that is mainly associated with the attack of oxygen on the soot surface. The decomposition of these complexes leads to active carbon sites on which NO is adsorbed. Furthermore, the oxidation of soot by oxygen provides a specific configuration of active carbon sites with suitable atomic orbital orientation that enables the chemisorption and dissociation of NO as well as the recombination of two adjacent N atoms to evolve N2. Moreover, carbothermal reaction, high resolution transmission electron microscopy and isotopic studies result in a mechanistic model that describes the role of the Fe2O3 catalyst. This model includes the dissociative adsorption of O2 on the iron oxide, surface migration of the oxygen to the contact points of soot and catalyst and then final transfer of O to the soot. Moreover, our experimental data suggest that the contact between both solids is maintained up to high conversion levels thus resulting in continuous oxygen transfer from catalyst to soot. As no coordinative interaction of soot and Fe2O3 catalyst is evidenced by diffuse reflectance infrared Fourier transform spectroscopy a van der Waals type interaction is supposed.  相似文献   

9.
This study focuses on the loading of catalytic materials, e.g., palladium on the surface of supporting materials, with the aim to obtain catalysts with high activity for methane combustion. The catalyst PdO/CeO2-Al2O3 was prepared by impregnation under ultrasonic condition. The effect of different activation methods on the activity of catalysts for methane catalytic combustion was tested. The properties of reaction and adsorption of oxygen species on catalyst surface were characterized by H2-temperature programmed reduction (H2-TPR), and O2-temperature programmed desorption (O2-TPD). Furthermore, the sulfur tolerance and sulfur poisoning mode were investigated. The results indicate that the catalyst PdO/CeO2-Al2O3 activated with rapid activation shows higher activity for methane combustion and better sulfur tolerance. The result of sulfur content analysis shows that there is a large number of sulfur species on the catalyst’s surface after reactivation at high temperature. It proves that the activity of catalysts cannot be fully restored by high-temperature reactivation.  相似文献   

10.
Catalytic performance for partial oxidation of methane (POM) to synthesis gas was studied over the Rh/Al2O3 catalysts with Rh loadings between 0.1 and 3 wt%. It was found that the ignition temperature of POM reaction increased with the decreasing of the Rh loadings in the catalysts. For the POM reaction over the catalysts with high (≥1 wt%) Rh loadings, steady-state reactivity was observed. For the reaction over the catalysts with low (≤0.25 wt%) Rh loadings, however, oscillations in CH4 and reaction products (CO, H2, and CO2) were observed. Comparative studies using H2-TPR, O2-TPD and high temperature in situ Raman spectroscopy techniques were carried out in order to elucidate the relation between the redox property of the Rh species in the Rh/Al2O3 with different Rh loadings and the performance of the catalysts for the reaction. Three kinds of oxidized rhodium species, i.e. the rhodium oxide species insignificantly affected by the support (RhOx), that intimately interacting with the Al2O3 surface (RhiOx) and the Rh(AlO2)y species formed by diffusion of rhodium oxides in to sublayers of Al2O3 [C.P. Hwang, C.T. Yeh, Q.M. Zhu, Catal. Today, 51 (1999) 93.], were identified by H2-TPR and O2-TPD experiments. Among them, the first two species can be easily reduced by H2 at temperature below 350 °C, while the last one can only be reduced by H2 at temperature above 500 °C. The ignition temperatures of POM reaction over the catalysts are closely related to the temperature at which most of the RhOx and RhiOx species can be reduced by CH4 in the reaction mixture. Compared to the Rh/Al2O3 with high Rh loadings, the catalysts with low Rh loadings contain more RhiOx species which possess stronger RhO bond strength and are more difficult to be reduced than RhOx by the reaction mixture. Higher temperature is therefore required to ignite the POM reaction over the catalysts with lower Rh loadings. The oscillation during the POM reaction over the Rh/Al2O3 with low Rh loadings can be related to the behaviour of Rh(AlO2)y species in the catalyst switching cyclically from the oxidized state to the reduced state during the reaction.  相似文献   

11.
In this study, a novel bifunctional catalyst IrFe/Al2O3, which is very active and selective for preferential oxidation of CO under H2-rich atmosphere, has been developed. When the molar ratio of Fe/Ir was 5/1, the IrFe/Al2O3 catalyst performed best, with CO conversion of 68% and oxygen selectivity towards CO2 formation of 86.8% attained at 100 °C. It has also been found that the impregnation sequence of Ir and Fe species on the Al2O3 support had a remarkable effect on the catalytic performance; the activity decreased following the order of IrFe/Al2O3 > co-IrFe/Al2O3 > FeIr/Al2O3. The three catalysts were characterized by XRD, H2-TPR, FT-IR and microcalorimetry. The results demonstrated that when Ir was supported on the pre-formed Fe/Al2O3, the resulting structure (IrFe/Al2O3) allowed more metallic Ir sites exposed on the surface and accessible for CO adsorption, while did not interfere with the O2 activation on the FeOx species. Thus, a bifunctional catalytic mechanism has been proposed where CO adsorbed on Ir sites and O2 adsorbed on FeOx sites; the reaction may take place at the interface of Ir and FeOx or via a spill-over process.  相似文献   

12.
The effect of the Pd addition method into the fresh Pd/(OSC + Al2O3) and (Pd + OSC)/Al2O3 catalysts (OSC material = CexZr1−xO2 mixed oxides) was investigated in this study. The CO + NO and CO + NO + O2 model reactions were studied over fresh and aged catalysts. The differences in the fresh catalysts were insignificant compared to the aged catalysts. During the CO + NO reaction, only small differences were observed in the behaviour of the fresh catalysts. The light-off temperature of CO was about 20 °C lower for the fresh Pd/(OSC + Al2O3) catalyst than for the fresh (Pd + OSC)/Al2O3 catalyst during the CO + NO + O2 reaction. For the aged catalysts lower NO reduction and CO oxidation activities were observed, as expected. Pd on OSC-containing alumina was more active than Pd on OSC material after the agings. The activity decline is due to a decrease in the number of active sites on the surface, which was observed as a larger Pd particle size for aged catalysts than for fresh catalysts. In addition, the oxygen storage capacity of the aged Pd/(OSC + Al2O3) catalyst was higher than that of the (Pd + OSC)/Al2O3 catalyst.  相似文献   

13.
Chunli Zhao  Israel E. Wachs   《Catalysis Today》2006,118(3-4):332-343
The vapor-phase selective oxidation of propylene (H2CCHCH3) to acrolein (H2CCHCHO) was investigated over supported V2O5/Nb2O5 catalysts. The catalysts were synthesized by incipient wetness impregnation of V-isopropoxide/isopropanol solutions and calcination at 450 °C. The catalytic active vanadia component was shown by in situ Raman spectroscopy to be 100% dispersed as surface VOx species on the Nb2O5 support in the sub-monolayer region (<8.4 V/nm2). Surface allyl species (H2CCHCH2*) were observed with in situ FT-IR to be the most abundant reaction intermediates. The acrolein formation kinetics and selectivity were strongly dependent on the surface VOx coverage. Two surface VOx sites were found to participate in the selective oxidation of propylene to acrolein. The reaction kinetics followed a Langmuir–Hinshelwood mechanism with first-order in propylene and half-order in O2 partial pressures. C3H6-TPSR spectroscopy studies also revealed that the lattice oxygen from the catalyst was not capable of selectively oxidizing propylene to acrolein and that the presence of gas phase molecular O2 was critical for maintaining the surface VOx species in the fully oxidized state. The catalytic active site for this selective oxidation reaction involves the bridging VONb support bond.  相似文献   

14.
Vanadium oxides supported on γ-Al2O3, SiO2, TiO2, and ZrO2 were studied on their molecular structures and reactive performances for soot combustion. To investigate the effect of different alkali metals on the structures and reactivities of supported-vanadium oxide catalysts, they were doped into the V4/TiO2 catalyst which had the best intrinsic activity for soot combustion in the selected supported vanadium oxide catalysts. The experimental results demonstrated that the catalytic properties of these catalysts depended on the vanadium loading amount, support nature, and the presence or the absence of alkali metals. The spectroscopic analysis (FT-IR and UV–vis) and H2-TPR results revealed that the higher activity of alkali-promoted vanadium oxide catalysts could be related to the ability of alkali metal promoting the redox cycle of the active vanadyl species. TG results showed that adding alkali to Vm/TiO2 catalyst was beneficial to lowering their melting points. Low melting points could ensure the good surface atom migration ability, which would improve the contact between the catalyst and soot. Due to the alkali metal components promoting the redox ability and the mobility of the catalysts, alkali-modified vanadium oxide catalysts could remarkably improve their catalytic activities for soot combustion. The catalytic activity order for soot combustion followed Li > Na > K > Rb > Cs in the catalyst system of alkali-V4/TiO2, and the reason why it followed this sequence was discussed.  相似文献   

15.
The effect of a commercial Pt/Al2O3 catalyst on the oxidation by NO2 and O2 of a model soot (carbon black) in conditions close to automotive exhaust gas aftertreatment is investigated. Isothermal oxidations of a physical mixture of carbon black and catalyst in a fixed bed reactor were performed in the temperature range 300–450 °C. The experimental results indicate that no significant effect of the Pt catalyst on the direct oxidation of carbon by O2 and NO2 is observed. However, in presence of NO2–O2 mixture, it is found that besides the well established catalytic reoxidation of NO into NO2, Pt also exerts a catalytic effect on the cooperative carbon–NO2–O2 oxidation reaction. An overall mechanism involving the formation of atomic oxygen over Pt sites followed by its transfer to the carbon surface is established. Thus, the presence of Pt catalyst increases the surface concentration of –C(O) complexes which then react with NO2 leading to an enhanced carbon consumption. The resulting kinetic equation allows to model more precisely the catalytic regeneration of soot traps for automotive applications.  相似文献   

16.
史蕊  李坚 《工业催化》2018,26(3):39-44
采用共沉淀法制备xWO_3-Ce O2-Co_3O_4复合型非贵金属CO低温催化剂,考察不同WO_3添加量和空速对催化剂催化活性的影响,并考察催化剂的抗硫性能。通过孔隙结构测试、H2-TPR、FT-IR和SEM等对催化剂进行表征。结果表明,WO_3添加质量分数1%时,催化剂具有最佳的低温活性。在CO进口体积分数0.12%、O2进口体积分数5%和空速15 000 h-1条件下,50℃时,CO转化率即可达到99.6%,60℃时,CO转化率达100%。添加WO_3,催化剂氧化能力增强,催化效率提高。随着空速升高,CO转化率下降。WO_3的加入可有效提高催化剂的比表面积,抑制硫酸盐在催化剂表面聚集,提高催化剂的抗硫性能。  相似文献   

17.
The reaction between hydrogen and NO was studied over 1 wt.% Pd supported on NOx-sorbing material, MnOx–CeO2, at low temperatures. The result of pulse mode reactions suggest that NOx adsorbed as nitrate and/or nitrite on MnOx–CeO2 was reduced by hydrogen, which was spilt-over from Pd catalyst. The NOx storage and reduction (NSR) cycles were carried out over Pd/MnOx–CeO2 in a conventional flow reactor at 150 °C. In a storage step, NO was removed by the oxidative adsorption from a stream of 0.04–0.08% NO, 5–10% O2, and He balance. This was followed by a reducing step, where a stream of 1% H2/He was supplied to ensure the conversion of nitrate/nitrite to N2 and thus restore the adsorbability. It was revealed that the NSR cycle is much more suitable for the H2–deNOx process in excess O2, compared to a conventional steady state reaction mode.  相似文献   

18.
Catalytic combustion of diesel soot on Co, K supported catalysts   总被引:8,自引:0,他引:8  
Catalysts containing 12% Co and 4.5% K, supported on MgO and CeO2 have been studied for diesel soot catalytic combustion. It has been found that this reaction occurs by a redox mechanism when Co and K are deposited on any of the above-mentioned supports. On MgO-supported catalysts, CoOx species are responsible for the supply of oxygen by a redox reaction. In this catalyst, K plays different roles, one of them being the stabilization of the CoOx particles. On CeO2-supported catalysts, Co does not significantly improve the activity of the K/CeO2 catalyst, since in this case the support itself displays redox properties. XPS analyses indicate that the oxygen availability on the surface is much higher on CeO2 than on MgO. On both CeO2 and MgO-supported catalysts, K might provide a route for CO2 release through a carbonate intermediate species. The presence of NO in the gas phase improves the catalytic activity for soot elimination. NO is oxidized to NO2 on the Co, K/CeO2 catalyst, and NO2 is a stronger oxidizing agent than O2, therefore decreasing the temperature needed to burn the soot.  相似文献   

19.
The catalytic properties of CeO2 catalysts in direct synthesis of dimethyl carbonate (DMC) from CH3OH and CO2 were investigated. The formation rate of DMC over the catalysts calcined at 873 K and above was almost proportional to the surface area of catalysts. However, CeO2 calcined at 673 K showed lower activity than expected from the surface area. From the results of catalyst characterization, CeO2 calcined at 673 K contained considerable amount of amorphous phase. In contrast, the ratio of amorphous phase decreased on the catalysts calcined at 873 K and above. This suggests that stable crystallite surface is active for the reaction.

In the CH3OH + C2H5OH + CO2 reaction at low temperature, ethyl methyl carbonate (EMC) was formed, and selectivity of EMC formation was comparable to that of DMC. The formation route is discussed by the comparison with transesterification reaction.  相似文献   


20.
Ru/C catalysts promoted, or not, by cerium were prepared by impregnation of an active carbon (961 m2 g−1) with chlorine-free precursors of Ru and Ce. They were characterized by chemisorption of H2 and of CO and by electron microscopy. TEM and H2 chemisorption gives coherent results while CO chemisorption overestimates Ru dispersion. In Ru–Ce/C, Ce is in close contact with Ru and decreases Ru accessibility.

Catalytic wet air oxidation (CWAO) of phenol and of acrylic acid (160°C and 20 bar of O2) was investigated over these catalysts and their performance (activity, selectivity to intermediate compounds) compared with that of a reference Ru/CeO2 catalyst. Carbon-supported catalysts were very active for the CWAO of phenol but not for acrylic acid. Although high conversions were obtained, phenol was not totally mineralized after 3 h. It was shown that acrylic acid was more strongly adsorbed than phenol. Moreover, the number of contact points between Ru particles and CeO2 crystallites constitutes a key parameter in these reactions. A high surface area of ceria is required to insure O2 activation when the organic molecule is strongly adsorbed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号