首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Epithelial cells in primary ovine lens cultures express the gap junction proteins connexin43 (Cx43) and connexin49 (Cx49; a.k.a. MP70), a homologue of mouse connexin50. In contrast, lens cultures of differentiated, fiber-like cells (termed lentoid cells) express Cx49 and connexin46 (Cx46), but not Cx43. To investigate the regulation of lens cell gap junctions by protein kinase C (PKC), differentiating lens cultures were treated with the PKC activator 12-O-tetradecanoylphorbol-13-acetate (beta-TPA). Within 10 min, beta-TPA significantly inhibited the transfer of Lucifer Yellow dye between epithelial, but not lentoid, cells. This inhibition was correlated with the phosphorylation of Cx43 and was followed by the gradual disappearance of Cx43 from cell interfaces. The protein kinase inhibitor staurosporine prevented Cx43 phosphorylation and the loss of Cx43 from intercellular junctions. Following treatment of cultures with beta-TPA for 2-6 hr, Cx49 disappeared from epithelial cell interfaces, and by 24 hr of beta-TPA treatment, levels of Cx49 detected on immunoblots of purified epithelial membrane fractions had also diminished significantly. The beta-TPA-induced loss of Cx49 both from regions of epithelial cell contact and from isolated membranes was correlated with the disappearance of Cx49 mRNA. In contrast to the epithelial connexins, the lentoid connexins Cx49 and Cx46 were unaffected by even extended beta-TPA treatment. In spite of lentoid dye transfer being refractory to beta-TPA, significant levels of PKC-alpha (a beta-TPA-sensitive isoform) were detected in the lentoid cell. The response of lens gap junctions to beta-TPA depends upon the stage of differentiation and the complement of connexins expressed. The contrasting effects of beta-TPA on Cx43 and Cx49 in lens epithelial cells indicate a fundamental difference in the regulation of these connexin proteins in the developing mammalian lens.  相似文献   

2.
In intestinal inflammation, inflammatory cells infiltrate the submucosa and are found juxtaposed to intestinal epithelial cell (IEC) basolateral membranes and may directly regulate IEC function. In this study we determined whether macrophage (M phi), P388D1 and J774A.1, are coupled by gap junctions to IEC lines, Mode-K and IEC6. Using flow cytometric analysis, we show bi-directional transfer of the fluorescent dye, calcein (700 Da) between IEC and M phi resulting in a 3.5-20-fold increase in recipient cell fluorescence. Homocellular and heterocellular dye transfer between M phi and/or IEC was detected in cocultures of P388D1, J774A.1, Mode-K, IEC6 and CMT93. However, transfer between P388D1 and Mode-K was asymmetrical in that transfer from P388D1 to Mode-K was always more efficient than transfer from Mode-K to P388D1. Dye transfer was strictly dependent on IEC-M phi adhesion which in turn was dependent on the polarity of IEC adhesion molecule expression. Both calcein dye transfer and adhesion were inhibited by the addition of heptanol to cocultures. Furthermore we demonstrate both IEC homocellular, and M phi-IEC heterocellular propagation of calcium waves in response to mechanical stimulation, typical of gap junctional communication. Finally, areas of close membrane apposition were seen in electron micrographs of IEC-M phi cocultures, suggestive of gap junction formation. These data indicate that IEC and M phi are coupled by gap junctions suggesting that gap junctional communication may provide a means by which inflammatory cells might regulate IEC function.  相似文献   

3.
Activated macrophages (M phi) found in the intestinal lesions of patients with inflammatory bowel disease (IBD) secrete many inflammatory mediators which can regulate intestinal epithelial cell (IEC) function. However, little is known about direct M phi-IEC interactions. Two potential mechanisms by which cells may interact are through specific receptor-ligand binding of adhesion molecules, such as integrins or cadherins, and by exchange of cytoplasmic substances through transmembraneous channels called gap junctions. We investigated whether M phi could adhere to epithelial cells in culture and form transmembrane communication channels as defined by dye transfer. Primary cultures of murine M phi and a M phi cell line, P388D1, adhered to Mode-K and IEC6, but not CMT-93 IEC. Antibody blocking studies determined that P388D1-Mode-K binding was partially dependent on beta 2 integrin (CD18) function, Mode-K constitutively expressed CD106 (VCAM-1) and cell associated fibronectin, while P388D1 expressed low levels of CD49d/CD29 (VLA4) but blocking antibodies to these surface molecules did not inhibit P388D1-Mode-K adherence. Transfer of calcein dye from M phi to IEC was quantitated by flow cytometry and was dependent on M phi-IEC adhesion. Dye transfer was concentration dependent in that the fluorescence intensity of Mode-K was proportional to the number of adherent P388D1 cells as well as the dye load of the M phi. These results indicate that M phi interact with IEC by adhesion and possibly through gap junctions and may thus regulate IEC function by direct cell-cell communication.  相似文献   

4.
The ocular lens consists of a single layer of epithelial cells on its anterior surface and underlying fiber cells, which are derived from the epithelial cells by differentiation and make up the bulk of the lens. Because lens cells are segregated by age and stage of differentiation, we are using this tissue to study the role of the proteasome in differentiation. The purpose of this study is to corroborate the ATPase function of chick subunit 4 (cS4) and assess the levels of the mRNA in the differentiating lens relative to other tissues. We have generated a computer model of the tertiary structure of the ATPase domain of the cS4 of the ATPase complex that regulates the 20S proteasome. The predicted polypeptide from the cloned cDNA of cS4 (440 residues) had a calculated molecular mass of 49,182 and is 98 and 73% identical to human and yeast S4 protein sequences, respectively. A computer search for comparison with known proteins in GenBank showed that the cS4 protein sequence has a conserved region of about 200 amino acid residues including an ATP/GTP binding site and a mitochondrial energy transfer proteins signature sequence. Based on secondary structure, the computer-generated model of the ATPase domain is comparable to that of RecA, with a root mean square deviation of 0.851 from the RecA triad. mRNA in the 14-day-old chick embryo lens is derived primarily (90%) from differentiating cells. The level of cS4 mRNA determined by quantitative RT/PCR in this differentiating tissue was comparable to the cS4 mRNA levels in chick liver, heart, and brain.  相似文献   

5.
alphaA-Crystallin (alphaA) is a member of the small heat shock protein (sHSP) family and has the ability to prevent denatured proteins from aggregating in vitro. Lens epithelial cells express relatively low levels of alphaA, but in differentiated fiber cells, alphaA is the most abundant soluble protein. The lenses of alphaA-knock-out mice develop opacities at an early age, implying a critical role for alphaA in the maintenance of fiber cell transparency. However, the function of alpha-crystallin in the lens epithelium is unknown. To investigate the physiological function of alphaA in lens epithelial cells, we used the following two systems: alphaA knock-out (alphaA(-/-)) mouse lens epithelial cells and human lens epithelial cells that overexpress alphaA. The growth rate of alphaA(-/-) mouse lens epithelial cells was reduced by 50% compared with wild type cells. Cell cycle kinetics, measured by fluorescence-activated cell sorter analysis of propidium iodide-stained cells, indicated a relative deficiency of alphaA(-/-) cells in the G2/M phases. Exposure of mouse lens epithelial cells to physiological levels of UVA resulted in an increase in the number of apoptotic cells in the cultures. Four hours after irradiation the fraction of apoptotic cells in the alphaA(-/-) cultures was increased 40-fold over wild type. In cells lacking alphaA, UVA exposure modified F-actin, but actin was protected in cells expressing alphaA. Stably transfected cell lines overexpressing human alphaA were generated by transfecting extended life span human lens epithelial cells with the mammalian expression vector construct pCI-neoalphaA. Cells overexpressing alphaA were resistant to UVA stress, as determined by clonogenic survival. alphaA remained cytoplasmic after exposure to either UVA or thermal stress indicating that, unlike other sHSPs, the protective effect of alphaA was not associated with its relocalization to the nucleus. These results indicate that alphaA has important cellular functions in the lens over and above its well characterized role in refraction.  相似文献   

6.
The purpose of this study was to conduct a comprehensive ultrastructural analysis of the epithelial-fiber interface (EFI) in normal adult primate (Macaque nemestrina and fascicularis; 6-9 years old, n = 10) lenses. Scanning electron microscopy (SEM) was used to initially characterize the gross size, shape and three-dimensional organization of central zone (cz) epithelial cells and the anterior ends of elongating fibers beneath these cells. This fiducial information was essential to properly orient lens pieces in freeze fracture specimen carriers for the production of replicas with unambiguously identifiable EFI. Transmission electron microscopy (TEM) of replicas and thin-sectioned material were used to ultrastructurally analyse the cz EFI. TEM thin-sectioned material was also used to ultrastructurally analyse the pregerminative (pgz), germinative (gz) and transitional zone (tz) EFI. Correlative SEM and TEM of cz EFI components revealed that the apical membrane of both epithelial and elongating fiber cells were irregularly polygonal in shape, and aligned in parallel as smooth, concave-convex surfaces. However, whereas epithelial cell apical surfaces had minimal size variation, elongating fibers were larger and considerably variable in size. Quantitative analysis of > 10000 micron2 cz elongating fiber apical surfaces failed to detect any gap junctions defined in freeze fracture replicas as complementary aggregates of transmembrane proteins (connexons) conjoined across a narrowed extracellular space. However, a comparable frequency of vesicular events was noted in this region as quantified previously in adult and embryonic chick lens. Correlative TEM analysis > 1500 linear micrometers of thin-sectioned EFI from this region confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, and an extreme paucity of epithelial-elongating fiber gap junctions. In contrast, TEM analysis of > 1000 linear micrometers of thin-sectioned pgz, gz and tz EFI, confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, numerous epithelial-elongating fiber adherens junctions and a few epithelial-elongating fiber gap junctions. Thus, the results of this and previous quantitative morphological and physiological studies (electronic and dye coupling) demonstrate that there is limited coupling between cz epithelial cells and underlying elongating fibers. Furthermore, the absence of gap junctional plaques in cz EFI freeze-fracture replicas and either pentalaminar or septalaminar profiles in correlative thin-sections, suggests that this limited coupling could be mediated via isolated gap junction channels. However, the results of this and previous quantitative studies further show that a greater degree of coupling exists across the pgz, gz and tz regions of the EFI and that this coupling is likely to be mediated by gap junction plaques. Finally, this and other studies continue to demonstrate that transcytotic processes play a role in lens physiology at the EFI.  相似文献   

7.
PURPOSE: To investigate the role of the gap junction protein connexin43 (Cx43), which is predominantly expressed in lens epithelial cells in the control of lens development and organization. METHODS: Newborn mice in which the Cx43 gene was disrupted by homologous recombination were used. Lenses from Cx43 (-/-) mice and wild-type littermates were processed by using 2% glutaraldehyde fixation for light and transmission electron microscopy and by freezing in liquid nitrogen for light and confocal microscopy of immunofluorescence in cryosections. RESULTS: In wild-type mice, Cx43 was immunolocalized to apical and lateral regions of lens epithelial cells and throughout the cornea, iris, ciliary body, and retina. In the bow, or equatorial, region of the lens, Cx43 disappeared gradually at the margins of the epithelial layer, whereas major intrinsic polypeptide, MP26, and alpha-crystallins were only detected in differentiated fiber cells. Ultrastructural studies revealed that epithelial cells and epithelial fiber cells were connected by large gap junctions. Lens fiber cells were closely apposed to apical boundaries of epithelial cells and apposed to one another along their entire lengths. In Cx43 (-/-) mice, epithelial cells were connected more loosely. The distribution of MP26 and alpha-crystallin in bow region fiber cells in Cx43 (-/-) lenses was not distinguishable from that in the lenses of wild-type mice. Cx46 and Cx50 were also expressed in superficial and cortical fiber cells, with similar distributions in Cx43 (-/-) and wild-type mice. However, organization of appositional membranes between lens fiber cells and between fiber and epithelial cells differed dramatically in the Cx43 (-/-) lens. In contrast to the close apposition of cells in lenses of normal mice, fiber cells in Cx43 (-/-) lenses were largely separated from apical surfaces of epithelial cells, and large vacuolar spaces were apparent between fiber cells, most prominently in deeper cortical regions. CONCLUSIONS: The normal differentiation of lens fiber cells in the bow region in lenses of Cx43 (-/-) mice, evidenced by similar distributions of Cx46, Cx50, MP26, and alpha-crystallin, suggests that the expression of Cx43 is not required for this process. However, these lenses exhibit grossly dilated extracellular spaces and intracellular vacuoles, indicative of early stages of cataract formation. These changes suggest that osmotic balance within the lens is markedly altered in Cx43 (-/-) animals, highlighting the importance of intercellular communication mediated by lens epithelial Cx43 gap junctions in the function of this tissue.  相似文献   

8.
Cultured rabbit lenses and cultured rabbit lens epithelial cells were irradiated with UV to correlate morphological changes in the epithelium with physiological changes in the whole lens during the development of UV-induced cataract. Two UV spectral ranges were utilized; one spanned 290 to 340 nm and was designated near-UV, the other was a narrower, pure UVB region: 303 to 313 nm, designated UVB. Irradiation with either spectrum of the anterior surface of whole lenses caused opacification and a dose-dependent loss of ion homeostasis as measured by Na+ and Ca2+ concentrations in whole lenses. It was determined that cation pump activity, assessed by 86Rb uptake, continued to decline steadily during culture after UV irradiation. Whole mount preparations of the epithelial cell layer of UVB-irradiated lenses revealed morphological changes within 2 hr of irradiation and cell death after 20 hr. Following posterior irradiation of whole lenses, the epithelial cells remained viable and lenses remained transparent during 3 days of culture, presumably because UV photons did not reach the epithelium. Absorption of UV photons by posterior fiber cell membranes and proteins did not cause opacification. To learn more about the epithelial damage, cultured rabbit lens epithelial cells were irradiated, UVB treatment retarded growth over a 7-day period in cultured cells. The surviving cells at day 7 were abnormal in appearance and the potassium concentration was approximately 50% less than controls, a finding which may explain the previously reported reduction in protein synthesis by UVB irradiation. Collectively, the data suggest that UV cataract is initiated by damage to the epithelium, including a change in membrane permeability leading to loss of ion homeostasis in the lens.  相似文献   

9.
The distribution of alpha A- and alpha B-crystallin in the developing lens of human (Carnegie stages 13 to 23) and rat embryos (embryonic days E11 to 18) was examined immunohistochemically. In a human embryo at stage 13, the lens placode was already immunoreactive to alpha B-crystallin, but not to alpha A-crystallin. At stage 15, the lens vesicle was intensely immunoreactive both to alpha A- and alpha B-crystallin. From stages 16 to 23, the lens epithelial cells and fiber cells were immunoreactive to alpha A- and alpha B-crystallin. In rat embryos, alpha A-crystallin appeared in the lens pit at E12, and alpha B-crystallin appeared in the elongating lens fiber cells at E14. From E15 to E18, the lens epithelial cells and fiber cells were immunoreactive to alpha A-crystallin. The lens fiber cells were also immunoreactive to alpha B-crystallin, but the epithelial cells were not. These findings suggest that alpha B-crystallin appears earlier than alpha A-crystallin in the human lens, but at a later period than alpha A-crystallin in the rat lens. alpha B-Crystallin was not detected in the epithelial cells of the rat lens, but was persistently present in the epithelial cells of the human lens.  相似文献   

10.
Previous studies showed that lens epithelial cells proliferate rapidly in the embryo and that a lens mitogen, most likely derived from the blood, is present in the anterior chamber of the embryonic eye (Hyatt, G. A., and Beebe, D. C., Development 117, 701-709, 1993). Messenger RNAs for several growth factor receptors have been identified in embryonic lens epithelial cells. We tested several growth factors that are ligands for these receptors for their ability to maintain lens cell proliferation. Embryo serum, PDGF, GM-CSF, and G-CSF maintained lens cell proliferation, but NGF, VEGF, and HGF did not. This and a previous study (Potts, J. D., Harocopos, G. J., and Beebe, D. C., Curr. Eye Res. 12, 759-763, 1993) detected members of the Janus kinase family (Jaks) in the developing lens. Because Jaks are central players in the Jak-STAT-signaling pathway, we identified STAT proteins in the lens and tested whether they were phosphorylated in response to mitogens. STAT1 and STAT3, but not STAT 5 were detected in chicken embryo lens epithelial cells. Only STAT3 was found in terminally differentiated lens fiber cells. STAT1 and STAT3 were phosphorylated in lens cells analyzed immediately after removal from the embryo and when lens epithelial explants were treated with embryo serum, PDGF, or GM-CSF, but not with NGF. Chicken embryo vitreous humor or IGF-1, factors that stimulate lens cell differentiation, but not proliferation, did not cause STAT phosphorylation. When lens epithelial cells were cultured for 4 h in unsupplemented medium, STAT1 and STAT3 declined to nearly undetectable levels. Treatment with PDGF or embryo serum for an additional 15 min restored STAT1 and -3 levels. This recovery was blocked by cycloheximide, but not actinomycin D, suggesting that STAT levels are regulated at the level of translation. STAT levels were maintained in epithelial explants by lens mitogens, but not by factors that stimulated lens fiber differentiation. Both factors that stimulated lens cell proliferation and those that caused fiber differentiation protected cultured lens epithelial cells from apoptosis. These data suggest that the factor(s) responsible for lens cell proliferation in vivo activates the Jak-STAT-signaling pathway. They also indicate that growth factors maintain STAT protein levels in lens epithelial cells by promoting the translation of STAT mRNA, an aspect of STAT regulation that has not been described previously. Signaling by most of the growth factors and cytokines known to activate the Jak-STAT pathway has been disrupted in mice by mutation or targeted deletion. Consideration of the phenotypes of these mice suggests that the factor responsible for lens cell proliferation in vivo may be a growth factor or cytokine that has not yet been described.  相似文献   

11.
In view of renewed interest in the lens epithelium as the initiation site for cataract development, it seemed timely to review recent studies which appear to establish UV damage in the lens epithelium as the cause of UV cataract. While UV photons can and do interact with lens proteins in the cortex and nucleus, experimental results from cultured lenses and tissue cultured epithelial cells also demonstrate both mutagenic and cytotoxic effects in the epithelium. This minireview examines UV-induced changes in lens physiology that appear to follow epithelial cell damage, including inactivation of critical enzymes of transport and metabolic processes. Changes in membrane function include altered cation transport, increased permeability, and altered biosynthesis. One potential scenario for the propagation of damage from the epithelium to the underlying fiber cells includes calcium elevation, an early event in cataract development and critical to many physiological processes.  相似文献   

12.
The cytochemical localization of glycoconjugates in the 14-day old embryonic chick lens was analysed by lectin-gold labelling. Con A/HRP gold particles, specific for D-mannose labelled the interior of the rough endoplasmic reticulum, membranes of the Golgi complex, secretory vesicles and the plasma membranes of the lens epithelial cell. The lens capsule was heavily labelled. Lens fiber cell membranes were also labelled. In contrast LFA, specific for neuraminic acid, did not bind to the endoplasmic reticulum or nuclear membrane. Labelling of the Golgi complex, secretory vesicles and capsule was observed. The plasma membranes of epithelial and fiber cells were extensively labelled, and probably reflects the presence of glycolipids such as gangliosides.  相似文献   

13.
The vertebrate lens provides an in vivo model to study the molecular mechanisms by which growth factors influence development decisions. In this study, we have investigated the expression patterns of platelet-derived growth factor (PDGF) and PDGF receptors during murine eye development by in situ hybridization. Postnatally, PDGF-A is highly expressed in the iris and ciliary body, the ocular tissues closest to the germinative zone of the lens, a region where most proliferation of lens epithelial cells occurs. PDGF-A is also present in the corneal endothelium anterior to the lens epithelium in embryonic and early postnatal eyes. PDGF-B is expressed in the iris and ciliary body as well as in the vascular cells which surround the lens during early eye development. In the lens, expression of PDGF-alpha receptor (PDGF-alphaR), a receptor that can bind both PDGF-A and PDGF-B, is restricted to the lens epithelium throughout life. The expression of PDGF-alphaR in the lens epithelial cells and PDGF (A- and B-chains) in the ocular tissues adjacent to the lens suggests that PDGF signaling may play a key role in regulating lens development. To further examine how PDGF affects lens development in vivo, we generated transgenic mice that express human PDGF-A in the lens under the control of the alphaA-crystallin promoter. The transgenic mice exhibit lenticular defects that result in cataracts. The percentage of surface epithelial cells in S-phase is increased in transgenic lenses compared to their nontransgenic littermates. Higher than normal levels of cyclin A and cyclin D2 expression were also detected in transgenic lens epithelium. These results together suggest that PDGF-A can induce a proliferative response in lens epithelial cells. The lens epithelial cells in the transgenic mice also exhibit characteristics of differentiating fiber cells. For example, the transgenic lens epithelial cells are slightly elongated, contain larger and less condensed nuclei, and express fiber-cell-specific beta-crystallins. Our results suggest that PDGF-A normally acts as a proliferative factor for the lens epithelial cells in vivo. Elevated levels of PDGF-A enhance proliferation, but also appear to induce some aspects of the fiber cell differentiation pathway.  相似文献   

14.
15.
Near-field mixing downstream of a multiport diffuser in a wide shallow river was studied with a field dye test. Dye concentrations at different depths and lateral locations were measured. The near-field mixing was analyzed in four zones: the free jet zone, the jet surface-impingement zone, the merging zone, and the vertical mixing zone. Analytical models were proposed to derive the three-dimensional concentration field after the jets impinged the water surface. After the impingement, the dye concentration can be predicted well by treating the multiple jets as a simple mathematical summation of individual jets. The vertical mixing zone was dominated by the riverbed friction-induced turbulence, with little effect from the effluent momentum and buoyancy. The results of the field data were also used to validate the applicability of some existing models for multiport diffusers.  相似文献   

16.
Although gap junctions are absent from adult skeletal muscle, they have been described in embryonic and neonatal rat skeletal muscle and in cultured rat myoblasts. In order to determine the precise developmental expression and molecular composition of gap junctions during myogenesis, RNA was isolated from cultures of rat L6 myoblasts and examined using Northern blot analysis with cDNA probes specific for connexin32 and connexin43. Connexin32 mRNA could not be detected in rat myoblast and myotube samples. However, connexin43 mRNA was expressed at high levels in cycling L6 myoblasts and this expression decreased by approximately 60% in L6 myotubes following fusion. Immunofluorescent localization with an antibody specific for connexin43 confirmed the accumulation of connexin43 protein in membranes shared between adjacent myoblasts at 12 hr of culture. By 24 hr of culture, connexin43 disappeared from most cells, only to reappear at 36 hr at a low level that was maintained through 72 hr in culture. Although most myoblasts in these cultures expressed connexin43, myotubes expressed little or no membrane-associated connexin43. Dye transfer experiments established that, at 12 hr of culture, the majority of myoblasts were dye coupled suggesting that connexin43 protein is assembled into functional gap junctions. At 24 hr, the number of coupled cells decreased slightly, while at 48 hr, most of the myoblasts were not dye coupled. These results demonstrate that the expression of connexin43 is temporally correlated with myoblast fusion and may play a role in this process.  相似文献   

17.
Polarized epithelial cells represent the primary barrier to virus infection of the host, which must also be traversed prior to virus dissemination from the infected organism. Although there is considerable information available concerning the release of enveloped viruses from such cells, relatively little is known about the processes involved in the dissemination of nonenveloped viruses. We have used two polarized epithelial cell lines, Vero C1008 (African green monkey kidney epithelial cells) and Caco-2 (human intestinal epithelial cells), infected with poliovirus and investigated the process of virus release. Release of poliovirus was observed to occur almost exclusively from the apical cell surface in Caco-2 cells, whereas infected Vero C1008 cells exhibited nondirectional release. Structures consistent with the vectorial transport of virus contained within vesicles or viral aggregates were observed by electron microscopy. Treatment with monensin or ammonium chloride partially inhibited virus release from Caco-2 cells. No significant cell lysis was observed at the times postinfection when extracellular virus was initially detected, and transepithelial resistance and vital dye uptake measurements showed only a moderate decrease. Brefeldin A was found to significantly and specifically inhibit poliovirus biosynthetic processes by an as yet uncharacterized mechanism. The vectorial release of poliovirus from the apical (or luminal) surface of human intestinal epithelial cells has significant implications for viral pathogenesis in the human gut.  相似文献   

18.
Remarkably, a number of definitive epithelia, such as that of the anterior lens, give rise when suspended within 3D gels of type I collagen, to elongate, bipolar shaped cells that exhibit the ultrastructure, polarity, and migratory ability of mesenchymal cells. They begin producing type I collagen and stop producing crystallins, type IV collagen, and laminin. Here, we investigated changes in beta 1 integrins and their extracellular matrix (ECM) ligands during this transdifferentiation. The former free surface of the lens epithelium that is now in contact with collagen begins within a day to stain intensely for beta 1 and it is this surface rather than the surface facing the basement membrane that gives rise to mesenchymal cells. Immunoprecipitation experiments reveal a large increase in the beta 1 integrin subunit on mesenchymal cells as compared to the epithelium of origin. The alpha 5 integrin subunit, which is barely detectable in the lens, increases in the mesenchymal cells and alpha 3 continues to be expressed at about the same level as in the epithelium. alpha 6, the epithelial integrin subunit, and laminin, its ECM ligand, are not detected immunohistochemically or biochemically in the mesenchyme. Rather, the mesenchymal cells secrete abundant fibronectin, the major ECM ligand for alpha 5 beta 1. RGD peptides do not inhibit the transformation but antibodies to beta 1 do perturb the emigration of mesenchymal cells from the lens apical surface. We conclude that the beta 1 integrins newly expressed on the apical epithelial surface interact with the surrounding 3D collagen gel to help bring about this unusual epithelial-mesenchymal transition.  相似文献   

19.
Entry of human adenovirus into host cells involves interaction of virus particles with two distinct receptors. The initial binding event is mediated by the fiber protein, while subsequent interaction of the penton base protein with alpha v integrins promotes virus internalization and/or penetration. Although these interactions in epithelial and endothelial cells have been well characterized, relatively little is known as to whether these events occur during virus infection of human peripheral blood mononuclear cells. We demonstrate that freshly isolated peripheral blood monocytes and T lymphocytes express very small amounts of alpha v integrins and also are resistant to adenovirus infection. Exposure of monocytes to hematopoietic growth factors granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor induced expression of cell surface alpha v integrins, promoted the binding of penton base protein, and also rendered these cells susceptible to adenovirus-mediated gene delivery. Stimulation of T cells with a mitogen, phytohemagglutinin, or a cell-activating agent, phorbol myristate acetate, induced expression of alpha v integrins and also enhanced adenovirus-mediated gene delivery. These studies further indicate that alpha v integrins play a crucial role in adenovirus infection and also provide a useful strategy for enhancing adenovirus-mediated gene delivery into human peripheral blood mononuclear cells.  相似文献   

20.
Although recombinant adenoviruses are attractive vectors for gene transfer to airway epithelia, they have proven to be relatively inefficient. To investigate the mechanisms of adenovirus-mediated gene transfer to airway epithelia, we examined the role of adenovirus fiber and penton base, the two proteins involved in attachment to and entry of virus into the cell. We used human airway epithelia grown under conditions that allow differentiation and development of a ciliated apical surface that closely resembles the in vivo condition. We found that addition of fiber protein inhibited virus binding and vector-mediated gene transfer to immature airway epithelia, as well as to primary cultures of rat hepatocytes and HeLa cells. However, fiber protein had no effect on vector binding and gene transfer to ciliated airway epithelia. We obtained similar results with addition of penton base protein: the protein inhibited gene transfer to immature epithelia, whereas there was no effect with ciliated epithelia. Moreover, infection was not attenuated with an adenovirus containing a mutation in penton base that prevents the interaction with cell surface integrins. These data suggest that the receptors required for efficient infection by adenovirus are either not present or not available on the apical surface of ciliated human airway epithelia. The results explain the reason for inefficient gene transfer and suggest approaches for improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号