首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the area of heavy construction, welding processes are vital in the production and maintenance of pipelines and power plants. The fusion welding process generates formidable welding residual stress and metallurgical change, which together increase the crack driving force and reduce the resistance against brittle fracturing and environmental fracturing. This is a serious problem with many alloys, and it also arises in A106 Gr B steel pipes. This type of piping, which is used in petrochemical and heavy chemical plants, either degrades due to the corrosive environment, e.g., those containing chlorides and sulfides, and/or become damaged during service due to various corrosion damage mechanisms. Thus, in this study, after numerical and experimental analyses of the welding residual stress of a multi-pass welded A106 Gr B steel pipe weld, the electrochemical corrosion properties and environmentally induced cracking of an A106 Gr B steel pipe weld were assessed in a 5.0 wt.% NaCl solution that was saturated with H2S gas at room temperature on the basis of NACE TM 0177-90. In terms of sulfide stress corrosion cracking (SSCC) and sulfide corrosion fatigue (SCF), the low SSCC limit of smooth specimens, σSSCCsmooth, and the SCF limit, ΔσSCF, were 46 % and 32 % (160 MPa) of the ultimate tensile strength (502 MPa) of an A106 Gr B steel pipe weld, respectively. Further, (Δσres)SCF was assessed under 75 MPa, which is 15 % of the tensile strength.  相似文献   

2.
采用低碳钢涂层对1Cr18Ni9Ti不锈钢横向与纵向角焊缝接头进行喷涂处理,测试了涂层的显微硬度和结合强度,并分别在焊接状态和喷涂处理状态下进行疲劳对比试验.试验结果表明,等离子喷涂层的显微硬度、结合强度约为火焰喷涂层的2倍.等离子喷涂后1Cr18Ni9Ti接头疲劳性能明显改善.横向接头焊接状态试件的疲劳强度为169.8 MPa,火焰喷涂试件为186.2 MPa,等离子喷涂试件为213.8 MPa,与焊接状态试件相比,等离子喷涂试件的疲劳强度提高25.9%,火焰喷涂试件提高9.7%.纵向接头焊接状态试件的疲劳强度为91.1 MPa,等离子喷涂试件为100.4 MPa,等离子喷涂后疲劳强度提高10.2%.  相似文献   

3.
转向架用SMA490BW钢焊接接头超高周疲劳性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用超声疲劳试验方法对SMA490BW钢焊接接头的超高周疲劳性能进行研究,通过X射线应力仪对焊接试样残余应力进行测试,采用扫描电镜对疲劳裂纹的萌生、扩展及疲劳断裂机理进行观察和分析. 结果表明,SMA490BW钢母材的疲劳性能远高于焊接接头,在1 × 108循环周次条件下,接头的疲劳强度为141 MPa,仅为母材的44.2%. 接头裂纹主要萌生于焊趾表面缺陷处,疲劳断裂机理表现为准解理断裂, 并伴有塑性变形痕迹. 焊趾处几何不连续造成的应力集中和焊缝及其附近区域一定的残余拉应力,以及接头各微区组织和性能的不均匀性,是导致焊接接头疲劳性能偏低的主要原因.  相似文献   

4.
S135钻杆钢预腐蚀后的弯曲疲劳性能   总被引:1,自引:1,他引:0  
目的:考察有机盐钻井液对S135钻杆材料腐蚀及疲劳性能的影响。方法首先利用高温高压釜模拟有机盐钻井液井筒的工况环境,对疲劳试样进行预腐蚀,通过点蚀仪测定试样表面的腐蚀状况;然后利用旋转弯曲疲劳试验机在不同弯曲应力条件下对预腐蚀试样和未腐蚀试样的疲劳性能进行测试,算得不同存活率下的疲劳强度,并绘制不同存活率下的S-N曲线。用体视显微镜和扫描电镜观察预腐蚀试样和未腐蚀试样的疲劳断口形貌,进而得出S135钻杆材料表面腐蚀对其疲劳寿命的影响程度和影响机制。结果经过腐蚀的试样表面有较多腐蚀坑,腐蚀坑深度在0.4~0.7 mm之间。未腐蚀试样的疲劳强度为553 MPa,其疲劳断口只观察到单个疲劳裂纹源;腐蚀试样的疲劳强度为409 MPa,其疲劳断口观察到多个疲劳裂纹源。 S135钻杆材料腐蚀疲劳开裂敏感性指数为26%。结论经过高温高压有机盐钻井液环境腐蚀后,试样表面点蚀严重,腐蚀坑底部存在应力集中并导致裂纹源的形成,多个裂纹源的同时生长加快了裂纹的扩展,最终降低S135钻杆钢的疲劳强度。  相似文献   

5.
焊接残余应力对Invar钢疲劳寿命影响分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用有限元软件MSC.Marc计算了液化石油天然气船液舱Invar钢薄膜的焊接温度场和残余应力场,并计算了焊接残余应力与液体晃荡压力耦合条件下焊缝处的疲劳寿命.结果表明,焊缝表面中心线上的节点的纵向残余应力可达298.1 MPa左右,焊缝纵向残余应力的峰值可达328.3 MPa左右,高于Invar钢的室温屈服强度280.1 MPa.由于焊接残余应力的存在,Invar钢薄膜焊缝的疲劳寿命约由2.1×106降低到1.7×105.  相似文献   

6.
High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of ~1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.  相似文献   

7.
Hot stamping spot welding tailored blank (TB) technology is a process to produce spot welded automotive body parts by the following process: Spot welding steel sheets in lap configuration → Hot stamping (Heating to about 900°C → Quenching and forming in water-cooled die → Shot blasting to remove scale). This process has the advantage of producing high strength lap welded automotive body parts without increasing the number of forming dies. In this study, the tensile shear fatigue strength of the spot welding TB joints (Spot welding → Hot stamping) and conventional spot welded joints (Hot stamping → Spot welding) of the 1500MPa class uncoated boron steel sheets are compared. The obtained results are as follows. The fatigue life of the spot welding TB joints was more than two times longer than that of the conventional spot welded joints. The long fatigue life of the spot welding TB joints was not caused by the heating and quenching process but by the shot blasting process after heat treatment. Shot blasting on the outer sheet surface caused the high compressive residual stress on the outer surface and did not affect the residual stress on the lapped surface. Shot blasting on the outer sheet surface increased the initiation life of fatigue crack which occurred on the lapped surface and also reduced the crack propagation speed which propagates from the lapped surface to the outer surface. FE-analysis suggested that compressive residual stress on the outer surface reduce the opening of sheet separation of joints in fatigue tests and reduce the maximum principal stress around the edge of corona bond.  相似文献   

8.
季凯  张静  徐玉松 《焊接学报》2017,38(1):95-98
采用扫描电镜,透射电镜,拉伸试验及疲劳试验分析两种6005A铝合金焊接接头的组织及疲劳性能,揭示影响6005A铝合金焊接接头疲劳裂纹形成的主要原因.结果表明,适量铜能显著提升商用6005A铝合金拉伸性能与疲劳性能,其抗拉强度、断后伸长率和高周疲劳强度分别为220 MPa,12%和106 MPa.6005A铝合金焊接区域疲劳失效源于受焊接热输入影响的沉淀相Mg2Si粗化长大,适量铜能稳定热影响区相成分,改善远离焊缝的软化区间强化相Mg2Si在结晶面上偏聚,提高接头区域的疲劳性能.  相似文献   

9.
对16Mn钢双面埋弧焊CT试样的焊缝、热影响区、母材及垂直焊缝方向的疲劳裂纹扩展速率进行了研究。结果表明,焊接接头的不同部位疲劳裂纹扩展速率不同,平均应力、焊接残余应力、金相组织对疲劳裂纹的扩展速率都有一定的影响。  相似文献   

10.
AA6061填丝FSW T形接头特征及动静载特性分析   总被引:1,自引:0,他引:1  
利用自主开发的填丝静止轴肩T形接头焊接工具开展了6061-T4铝合金填丝T形接头的焊接试验,获得了成形良好的无缺陷T形接头. 对接头内部成形、显微组织、硬度分布、静载强度及疲劳性能进行了测试与分析. 结果表明,接头轴肩影响区表面存在超细晶区,内部质量良好,焊核区不同位置填充材料与母材发生了不同程度的混合. 接头底板及筋板硬度较母材有不同程度的降低,拉伸测试中底板和筋板方向接头均断裂于热影响区,接头系数分别0.68和0.83. 过渡圆角明显提高了接头的疲劳性能,在2 × 106疲劳寿命下的具有90%置信度及97.5%存活率的特征疲劳强度可达101.4 MPa,远高于IIW建议的设计准则. 疲劳断口显示疲劳裂纹萌生于接头表面轴肩压入边缘,在交变载荷作用下向内部扩展,裂纹稳定扩展区可见明显的疲劳条带,断裂机制为穿晶断裂.  相似文献   

11.
焊接接头焊趾处的等离子喷涂层可改善焊缝截面形状变化,降低该处的应力集中,提高焊接结构的疲劳强度。采用1Crl8Ni9Ti不锈钢十字接头焊态和喷涂处理试样分别进行疲劳对比试验,并对试验结果进行统计分析。疲劳试验结果表明,等离子喷涂后1Crl8Ni9Ti接头疲劳性能明显改善。焊态试件的疲劳强度为169.8MPa,火焰喷涂试件为186.2MPa,等离子喷涂试件为213.8MPa,与焊态试件相比,等离子喷涂试件的疲劳强度提高25.9%,火焰喷涂试件提高9.7%。等离子喷涂试件的疲劳寿命是焊态试件的1.58~9.62倍,火焰喷涂试件的疲劳寿命是焊态的1.55~1.97倍。  相似文献   

12.
飞机平尾大轴断裂故障分析   总被引:2,自引:0,他引:2  
某型飞机在试验中平尾大轴发生断裂。通过断口的观察分析、颤裂部位的金相分析、硬度检测,确定了平尾大轴的失效模式,并对其断裂原因进行了分析。结果表明,该平尾大轴的断裂性质为腐蚀疲劳断裂,裂纹均起源于衬套与筒体间的定位焊点处;定位焊点处选用了强度远低于基体的08A钢焊丝,导致焊点强度过低,在工作载荷作用下焊点处过早萌生了裂纹,焊接工艺不当是大轴断裂的主要因素;平尾大轴简体内壁涂敷防锈漆的质量较差,导致筒体内壁出现严重腐蚀。裂纹源区有腐蚀坑,且裂纹扩展过程中均有腐蚀特征,说明防腐蚀措施不当引起的腐蚀对大轴断裂也有重要影响。  相似文献   

13.
佟建华  张坤  林松  王卫兵 《焊接学报》2015,36(7):105-108
对10 mm厚6082-T6铝合金进行搅拌摩擦焊(FSW)和熔化极气体保护焊(MIG焊)焊接,利用疲劳性能试验机、光学显微镜、扫描电子显微镜等手段对6082铝合金FSW和MIG焊接头的疲劳力学性能、微观组织、裂纹扩展特征、疲劳断口进行了分析. 结果表明,在疲劳寿命为2×106周次时,6082铝合金母材及其FSW和MIG焊接头的名义应力分别为126.3,110.2,84.2 MPa;在高应力水平下(Δσ=160 MPa),FSW接头疲劳寿命明显大于MIG焊接头、与母材的疲劳寿命相当. MIG焊疲劳断口均位于焊趾处,焊缝内的气孔缺陷为其主要裂纹源;FSW疲劳断口大多发生在轴肩边缘. 接头的微观断口具有准解理特征,断口中存在疲劳条纹和韧窝.  相似文献   

14.
The fatigue properties of friction stir welded(FSW) butt joint and base metal of MB8 magnesium alloy were investigated.The comparative fatigue tests were carried out using EHF-EM200K2-070-1A fatigue testing machine for both FSW butt joint and base metal specimens.The fatigue fractures were observed and analyzed using a scanning electron microscope of JSM-6063 LA type.The experimental results show that the fatigue performance of the FSW butt joint of MB8 magnesium alloy is sharply decreased.The conditional fatigue limit(2 × 10~6) of base metal and welded butt joint is about77.44 MPa and 49.91 MPa,respectively.The conditional fatigue limit(2 × 10~6) of the welded butt joint is 64.45%of that of base metal.The main reasons are that the welding can lead to stress concentration in the flash area,tensile welding residual stress in the welded joint(The residual stress value was 30.5 MPa),as well as the grain size is not uniform in the heat-affected zone.The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface,the fracture type of the FSW butt joint belongs to a brittle fracture.  相似文献   

15.
Fatigue crack growth test was performed to evaluate fatigue behavior of 304 stainless steel specimens with or without laser processing (welding and surface treatment) in air and gaseous hydrogen. As the crack propagation normal to the laser welding or scan direction, the laser-processed specimens exhibited a higher resistance to crack growth in the low stress intensity factor range (ΔK) than the as-received steel plates regardless of testing environments. However, the marked retardation of crack growth behavior vanished for welded specimens subjected to a 850 °C/h stress relief treatment or with a shorter distance from notch tip to the weld centerline in the test.Fatigue-fractured appearance of the steel plate tested in air was composed of mainly transgranular fatigue fracture and some flat facets, along with a small amount of intergranular fracture. While quasi-cleavage fracture and few twin boundary separations were observed for the same specimen in hydrogen. On the other hand, the lower crack growth rate of laser-processed specimens in both air and hydrogen was accompanied with rubbed areas on the fracture surfaces. It was found that the extent of quasi-cleavage fracture was related to the formation of strain-induced martensite, which would contribute to an increased fatigue crack growth rate of all specimens in gaseous hydrogen.  相似文献   

16.
激光冲击强化对不锈钢焊接接头拉伸性能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
周留成  周磊  李应红  汪诚 《焊接学报》2011,32(4):52-54,58
利用激光冲击强化对12Cr2Ni4A不锈钢焊接接头进行处理,比较了激光冲击一次和二次前后焊接接头拉伸性能、显微硬度和表面残余应力.结果表明,12Cr2Ni4A 焊接试件经过二次激光冲击强化后,显微硬度提高了50%,抗拉强度由818.5 MPa提升至863.8 MPa,并且断裂区域由焊接热影响区转移至基体处,焊接试件的拉...  相似文献   

17.
P92 steel is a typical 9%similar to 12% Cr ferrite heat-resistant steel with good high temperature creep resistance, relatively low linear expansion coefficient and excellent corrosion resistance, so it is one of important structural materials used in supercritical thermal power plants. Fusion welding technology has been widely used to assemble the parts in thermal power plant. When the supercritical unit is in service, its parts are constantly subjected to combination of tensile, bending, twisting and impact loads under high temperature and high pressure, and many problems such as creep, fatigue and brittle fracture often occur. It has been recognized that welding residual stress has a significant impact on creep, fatigue and brittle fracture, so it is necessary to study the residual stress of P92 steel welded joints. The evolution and formation mechanism of welding residual stress in P92 steel joints under multiple thermal cycles were investigated in this work. Based on SYSWELD software, a computational approach considering the couplings among thermal, microstructure and mechanics was developed to simulate welding residual stress in P92 steel joints. Using the developed computational tool, the evolution of residual stress in Satoh test specimens was studied, and welding residual stress distribution in double-pass welded joints was calculated. In the numerical models, the influences of volume change, yield strength variation and plasticity induced by phase transformation on welding residual stress were taken into account in details. Meanwhile, the hole-drilling method and XRD method were employed to measure the residual stress distribution in the double-pass welded joints. The simulated results match the experimental measurements well, and the comparison between measurements and predictions suggests that the computational approach developed by the current study can more accurately predict welding residual stress in multi-pass P92 steel joints. The simulated results show that the longitudinal residual stress distribution around the fusion zone has a clear tension-compression pattern. Compressive longitudinal residual stresses generated in the fusion zone and heat affected-zone (HAZ) in each pass, while tensile stresses produced near the HAZs. In addition, the numerical simulation also suggests that the transverse constraint has a large influence on the transverse residual stress, while it has an insignificant effect on the longitudinal residual stress.  相似文献   

18.
Corrosion fatigue of hot-galvanized component-like welded joints in chloride medium at changing corrosion conditions The project was focussed on the investigation of the fatigue behaviour of welded specimens of hot-galvanized plate material of steel RSt 37-2, St 52-3 and St 70-2 as frequently used in steel constructions which were mended by thermal zinc-spraying in the fillet area and tested at changing corrosion conditions. In addition, the fatigue behaviour of welded specimens with additional PVC coating of both non-galvanized and galvanized types at changing corrosion reaction was also investigated. The established findings can be summarized as follows:
  • – At constant amplitude loading, hot-galvanized precludes very markedly the drop in endurance which would occur under corrosion. By contrast, an increase of fatigue strength in the corrosive medium due to galvanizing is only conditionally discoverable at variable amplitude loading. In regard to the protection against corrosion, welding of hot-galvanized parts brings an improvement at variable amplitude loading only if a given thickness of the zinc coating depending on the material is not exceeded. Too thick coating results in the formation of pores at the subsequent welding and reduces the fatigue strength in spite of the later zinc-spraying.
  • – The structural steels RSt 37-2 and St 52-3 in hot-galvanized state are better suitable for welding than the more notch- and corrosion-sensitive St 70-2.
  • – Soldering brittleness could not be established as cause of the failure.
  • – The application of PVC protective layers secures high rates of increase or the fatigue for the non-galvanized specimens.
  相似文献   

19.
960高强度钢激光焊接接头的组织和腐蚀性能   总被引:1,自引:1,他引:0       下载免费PDF全文
针对960高强度钢激光焊接接头腐蚀性能开展分析,利用扫描电镜和光学电镜分析接头微观组织;利用动电位极化技术研究接头不同区域在模拟海水中的腐蚀行为;并通过恒载荷加载装置研究接头在模拟海水中的应力腐蚀行为.结果表明,960高强度钢腐蚀规律为均匀腐蚀到点蚀再到均匀腐蚀.电化学测试结果3个区域的腐蚀速率从大到小为焊缝,热影响区,母材,且随着腐蚀的继续进行腐蚀速率减慢.热影响区粗晶区成为接头的薄弱环节,拉伸试样均断裂在热影响区.应力腐蚀使拉伸试样抗拉强度降低12%,断裂形式由韧性断裂变为准解理断裂.  相似文献   

20.
5A06铝合金焊接接头在超长寿命区间的疲劳性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用自行研制的TJU-HJ-I型超声疲劳试验系统对5A06铝合金TIG焊焊接接头在超长寿命区间的疲劳性能进行研究. 疲劳试验结果表明,圆柱状母材试件、圆柱状焊接接头试件和薄板状焊接接头试件,在经历107循环周次后,S-N曲线仍呈下降趋势,没有发现明显转折,传统意义上的疲劳极限并不存在. 焊接接头试件在107周次和109周次下的疲劳强度仅为母材的50%~70%. 通过扫描电子显微镜进行断口形貌观察发现:母材疲劳扩展区断口较焊接接头断口平整,瞬断区呈韧窝状,而无余高焊接接头试件存在气孔、夹杂等焊接缺陷,导致疲劳性能明显降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号