首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The in vivo disposition and in vitro metabolism of rifabutin, a new spiropiperidylrifamycin, were studied in rats and in microsomes from rat liver and enterocytes, respectively. After i.v. doses of 1,5, 10 and 25 mg/kg the systemic clearance was 0.7 to 1.0 liters/hr/kg; the volume of distribution was 4.4 liters/kg for the 1 mg/kg dose and 7.4 to 7.7 liters/kg for the 5 to 25 mg/kg doses, and the half-life ranged from 4.4 to 9.1 hr. Urinary and fecal excretion over 0 to 96 hr after i.v. administration of 25 mg/kg [14C]rifabutin accounted for 40.1 and 52.2% of the dose, respectively. Exteriorization of the bile duct showed that approximately 24% of the dose was eliminated in bile, > or = 98% as metabolites. Bioavailability after oral administration of 25 and 1 mg/kg rifabutin was > 90% and 44%, respectively, suggesting significant first-pass metabolism of the lower dose. Concentrations of rifabutin in gastric juice were 10 to 17 times higher than in blood, indicating extensive secretion into the stomach. Experiments with the isolated small intestinal loop demonstrated direct exsorption of the drug into the lumen. The rate of rifabutin metabolism by enterocyte microsomes was > 10 times higher than that by liver microsomes, i.e., 84 and 8 pmol/min/mg protein, respectively. Biotransformation of rifabutin in vivo and in vitro was markedly induced by dexamethasone and inhibited by erythromycin, suggesting that CYP3A is involved in the metabolism of rifabutin. Several metabolites, including 20-OH-rifabutin and 27-O-demethyl-rifabutin, isolated from urine and microsomes were identified by mass spectrometry and nuclear magnetic resonance spectroscopy.  相似文献   

2.
The metabolism and excretion of a new anxiolytic/antidepressant drug candidate, CP-93,393, ((7S, 9aS)-1-(2-pyrimidin-2-yl-octahydro-pyrido[1, 2-a]-pyrazin-7-yl-methyl)-pyrrolidine-2,5-dione) were investigated in cynomolgus monkeys after oral administration of a single 5 mg/kg dose of 14C-CP-93,393. Urine, bile, feces, and blood samples were collected and assayed for total radioactivity, parent drug, and metabolites. Total recovery of the administered dose after 6 days was 80% with the majority recovered during the first 48 hr. An average of 69% of the total radioactivity was recovered in urine, 4% in bile, and 7% in feces. Mean Cmax and AUC(0-infinity) values for the unchanged CP-93,393 were 143.2 ng/ml and 497.7 ng.hr/ml, respectively, in the male monkeys and 17.2 ng/ml and 13.7 ng.hr/ml, respectively, in the female monkeys. HPLC analysis of urine, bile, feces, and plasma from both male and female monkeys indicated extensive metabolism of CP-93,393 to several metabolites. The identification of metabolites was achieved by chemical derivatization, beta-glucuronidase/sulfatase treatment, and by LC/MS/MS, and the quantity of each metabolite was determined by radioactivity detector. CP-93,393 undergoes metabolism by three primary pathways, aromatic hydroxylation, oxidative degradation of the pyrimidine ring, and hydrolysis of the succinimide ring followed by a variety of secondary pathways, such as oxidation, methylation, and conjugation with glucuronic acid and sulfuric acid. The major metabolites, oxidation on the pyrimidine ring to form 5-OH-CP-93,393 (M15) followed by glucuronide and sulfate conjugation (M7 and M13), accounted for 35-45% of the dose in excreta. Two metabolites (M25 and M26) were formed by further oxidation of M15 followed by methylation of the resulting catechol intermediate presumably by catechol-O-methyl transferase. A novel metabolic pathway, resulting in the cleavage of the pyrimidine ring, was also identified. The metabolites (M18, M20, and M21) observed from this pathway accounted for 8-15% of the dose. Aliphatic hydroxylation of the succinimide ring was a very minor pathway in monkey. 5-Hydroxy-CP-93,393 (M15, 37-49%), its sulfate and glucuronide conjugates (M7 and M13, approximately 34%), and the pyrimidine ring cleaved product (M18, approximately 8%) were the major metabolites in monkey plasma. The identified metabolites accounted for approximately 90, 93, 97, and 92% of the total radioactivity present in urine, bile, plasma, and feces, respectively. The major in vivo oxidative metabolites were also observed after in vitro incubations with monkey liver microsomes.  相似文献   

3.
L-754,394 is a potent and specific inhibitor of the HIV-1 encoded protease that is essential for the maturation of the infectious virus. The drug exhibited dose-dependent kinetics in all species studied (rat, dog and monkey); the apparent clearance decreased when the dose was increased. However, the dose-dependency cannot be explained by Michaelis-Menten kinetics. L-754,394 in plasma declined log-linearly with time, but with an apparent half-life that increased with dose. The apparent terminal half-life of L-754,394 in rats increased from 20 min at 0.5 mg/kg i.v. to 118 min at 10 mg/kg i.v. Furthermore, L-754,394 exhibited time-dependent pharmacokinetics. After chronic i.v. doses for 7 days (1 mg/kg/dose/day), the apparent clearance of L-754,394 in rats decreased from 87 ml/min/kg after the first dose to 25 ml/min/kg after the last dose. Similar results were observed in dogs and monkeys. In vitro spectral studies indicated that approximately 40 to 60% of the content of cytochrome P-450 was inactivated when L-754,394 (10 microM) was incubated with rat, dog and monkey liver microsomes in the presence of NADPH. Little or no inactivation of cytochrome P-450 was observed when either NADPH or L-754,394 was omitted. In addition, L-754,394 selectively inhibited CYP 2C11-dependent testosterone 2 alpha- and 16 alpha-hydroxylase activity and CYP 3A1/2-dependent testosterone 6 beta-hydroxylase activity, but not CYP 2D1/2-dependent bufuralol 1'-hydroxylase activity nor CYP 1A2-dependent phenacetin O-deethylase activity in rat liver microsomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Concomitant oral administration of salicylamide (200 mg/kg) and 3H-terbutaline (1 mg/kg) to rats with ligated bile ducts decreased absorption of terbutaline from the gut from 73 to 56% as measured by urinary excretion of radioactivity in 48 hr. No increase in the fraction of terbutaline excreted unchanged was observed, suggesting that salicylamide does not substantially inhibit the conjugation of terbutaline with glucuronic acid. An increase in the fraction of terbutaline excreted unchanged observed in normal animals may result from enhanced excretion of terbutaline glucuronide into bile rather than from inhibition of conjugation.  相似文献   

5.
Inactivation of the human DNA repair protein, O6-alkylguanine-DNA-alkyltransferase (AGT), by exposure to O6-benzylguanine leads to a dramatic enhancement in the cytotoxic response of cells to chemotherapeutic alkylnitrosoureas. Benzylated pyrimidines identified as more potent inactivators than O6-benzylguanine in vitro include 2,4-diamino-6-benzyloxy-5-nitrosopyrimidine (5-nitroso-BP) and 2,4-diamino-6-benzyloxy-5-nitropyrimidine (5-nitro-BP). In efforts to determine the clinical usefulness of these benzylated pyrimidines, we examined the metabolism and pharmacokinetics of 5-nitroso-BP in Sprague-Dawley rats, together with its potency as an AGT inactivator in mice. The mean plasma half-life, clearance, and volume of distribution of 5-nitroso-BP in rats were, respectively, 3.8 min, 22 liters/hr/kg, and 2.1 liters/kg. Two metabolites were identified in rat plasma (i.e. 5-nitro-BP and 2,4,5-triamino-6-benzyloxypyrimidine) after intravenous administration of 5-nitroso-BP in rat. Reduction of 5-nitroso-BP (100 microM) occurred primarily in cytosol and was inhibited (> 95%) by 1 mM menadione. Dicumarol (100 microM), a DT-diaphorase inhibitor, did not significantly inhibit this reaction. This indicated a possible role of a dicumarol-resistant quinone reductase. At higher substrate and protein concentration, NADPH-dependent oxidation of 5-nitroso-BP to 5-nitro-BP primarily occurred in microsomes and was completely inhibited by 1-aminobenzotriazole (1 mM), a P450 inhibitor. Unfortunately, neither 5-nitroso-BP nor 5-nitro-BP was as effective as O6-benzylguanine at depleting AGT activity in mouse liver or spleen. At 1 hr after injection of 15 mg/kg O6-benzylguanine, 5-nitroso-BP, or 5-nitro-BP, AGT levels in liver fell to 1%, 66%, and 71% basal activity, respectively. Rapid cytosolic reduction of 5-nitroso-BP may explain the lack of potency of the pyrimidines in vivo.  相似文献   

6.
Tacrine's [1,2,3,4-tetrahydro-9-acridinamine monohydrochloride monohydrate, (THA)] metabolic fate was examined using human and rat liver microsomal preparations. Following 1-hr incubations with human microsomes, [14C]THA (0.4 microM) was extensively metabolized to 1-hydroxyTHA with trace amounts of 2-, 4-, and 7-hydroxyTHA also produced. Poor recovery of radioactivity in the postreaction incubates suggested association of THA-derived radioactivity with precipitated microsomal protein. After exhaustive extraction, 0.034, 0.145, 0.126, and 0.012 nmol eq bound/mg protein/60 min of THA-derived radioactivity was bound to human liver preparations H109, H111, H116, and H118, respectively. Preparations H109 and H118 were lower in P4501A2 content and catalytic activity as compared with preparations H111 and H116. Incubations of equimolar [14C]1-hydroxyTHA with human liver microsomes also resulted in binding to protein, although to a lesser extent than observed with THA. [14C]THA (0.4 microM) was incubated for 1 hr with rat liver microsomes (1 microM P-450) prepared from noninduced (N), phenobarbital (PB), isoniazid (I), and 3-methylcholanthrene (3-MC)-pretreated animals. In all incubations, 1-hydroxyTHA was the major biotransformation product detected. After exhaustive extraction, 0.048, 0.054, 0.049, and 0.153 nmol eq/mg protein/60 min of THA-derived radioactivity was bound to microsomal protein from N, PB, I, and 3-MC pretreated rats. Increased binding with 3-MC induced rat liver preparations suggests the involvement of the P-450 1A subfamily in THA bioactivation. Glutathione (5 mM) coincubation inhibited the irreversible binding of THA-derived radioactivity in both human and 3-MC-induced rat liver preparations, whereas human epoxide hydrase (100 micrograms/incubate) had a relative minor effect. A mechanism is proposed involving a putative quinone methide(s) intermediate in the bioactivation and irreversible binding of THA. A species difference in THA-derived irreversible binding exists between human and noninduced rat liver microsomes, suggesting that the rat is a poor model for studying the underlying mechanism(s) of THA-induced elevations in liver marker enzymes found in clinical investigations.  相似文献   

7.
Latanoprost (13,14-dihydro-17-phenyl-18,19,20-trinor-prostaglandin F2alpha-1-isopropyl ester) is a unique prostaglandin analogue developed for the treatment of glaucoma. To investigate the pharmacokinetics, tritium-labeled latanoprost was administered topically on the eyes of rabbits and intravenously. About 7.7% of the applied dose was found in the cornea at 15 min after the drug administration. The following Cmax and elimination half-life (interval 1-6 hr) values of the total radioactivity in the eye tissues were found: aqueous humor, 0.09 ng eq/ml and 3.0 hr; anterior sclera, 1.49 ng eq/mg and 1.8 hr; cornea, 1.59 ng eq/mg and 1.8 hr; ciliary body, 0.39 ng eq/mg and 2.8 hr; conjunctiva, 1.41 ng eq/mg and 1.4 hr; and iris, 0.39 ng eq/mg and 2.1 hr. Latanoprost was rapidly hydrolyzed, and most of the radioactivity found in the aqueous humor, anterior eye tissues, and plasma corresponded to the pharmacologically active acid of latanoprost. The initial plasma elimination half-life of the acid of latanoprost was 9.2 +/- 3.2 min after iv and 2.3 +/- 1.9 min after topical administration on the eyes. The plasma clearance of the acid of latanoprost was 1.8 +/- 0.3 liters/hr.kg, and the volume of distribution was 0.4 +/- 0.1 liter/kg after iv administration. Based on the retention times on HPLC and GC-MS, the main metabolite in urine and feces was identified as the 1,2,3,4-tetranor metabolite of acid of latanoprost. This acid existed in equilibration with the corresponding delta-lactone. The AUC of radioactivity in the eye tissues was approximately 1000 times higher than in plasma AUC. The recovery of radioactivity was complete.  相似文献   

8.
MK-0991 (L-743,872) is a potent antifungal agent featuring long half-life pharmacokinetics. The pharmacokinetics of MK-0991 administered intravenously to mice, rats, rhesus monkeys, and chimpanzees is presented. Unique to MK-0991 is its consistent cross-species performance. The range of values for the pharmacokinetic parameters were as follows: clearance, 0.26 to 0.51 ml/min/kg; half-life, 5.2 to 7.6 h; and distributive volume, 0.11 to 0.27 liters/kg. The level of protein binding of MK-0991 was determined to be 96% in mouse and human serum. The compound exhibited high affinities for human serum albumin and at least two lipid components. The rationale for the selection of MK-0991 as a drug development candidate was based on its two- to threefold superior pharmacokinetic performance in chimpanzees over the performance of an otherwise equivalent analog, L-733,560. Once-daily dosing for MK-0991 is indicated by a graphical comparison of levels in the circulations of chimpanzees and mice. In a study of the pharmacokinetics of MK-0991 in mouse tissue, the organs were assayed following intraperitoneal administration. The area under the concentration-versus-time curves (AUC) segregated the tissues into three exposure categories relative to plasma. The tissues with greater exposure than that for plasma were liver (16 times), kidney (3 times), and large intestine (2 times). The exposure for small intestine, lung, and spleen were equivalent to that for plasma. Organs with lower levels of exposure were the heart (0.3 times that for plasma), thigh (0.2 times), and brain (0.06 times). Kinetically, drug was cleared more slowly from all tissues than from plasma, indicating that terminal-phase equilibrium had not been achieved by 24 h. Thus, some measure of accumulation is predicted for all tissues. Single daily doses of MK-0991 should provide adequate systemic levels of fungicidal activity as a result of its long half-life pharmacokinetics, wide distribution, and slowly accumulating concentrations in tissue.  相似文献   

9.
Aminopyrine administered to normal human volunteers in an oral dose of either 9 mg/kg or 4.5 mg/kg prolonged the plasma half-life and reduced the metabolic clearance rate of antipyrine (18 mg/kg, orally) without changing its apparent volume of distribution. By contrast, this same oral dose of antipyrine given simultaneously with 9 mg/kg aminopyrine failed to alter aminopyrine disposition. Thus, antipyrine and aminopyrine should not be administered simultaneously to measure different steps in hepatic drug oxidation, although in man aminopyrine can be given for this purpose 24 hr after antipyrine. Antipyrine elimination was prolonged to the same extent when aminopyrine was given 5 hr before antipyrine as when the drugs were given simultaneoulsy. Since in man aminopyrine has a biologic halic-life of approximately 2.7 hr, the marked inhibitory effects observed 5 hr after aminopyrine administration may be due to its major metabolite, 4-aminoantipyrine. To define mechanism by which aminopyrine affects antipyrine disposition in vivo, hepatic microsomes were prepared from rats, mice, and dogs, and rates of antipyrine hydroxylation were measured in vitro both in the absence and in the presence of aminopyrine. In these species in vitro inhibition of antipyrine hydroxylation by 4-aminoantipyrine was of a mixed type; antipyrine inhibited competitively aminopyrine N-demethylation in vitro in rats, mice, and dogs. There were some sex and species differences in the Km' V max' and Ki for aminopyrine and antipyrine.  相似文献   

10.
The pharmacokinetics and macromolecular interactions of [14C-ring]melphalan (L-PAM) in blood were studied in rats following a single oral dose (20 mg/kg, 0.1 mCi/kg). Radioactivity levels were monitored in blood over a period of 72 hr. The highest levels of radioactivity were observed at 2 hr. The decline of radioactivity from the blood was biphasic with T1/2 alpha = 7 hr and T1/2 beta = 75 hr. The radioactive species in plasma corresponded to unchanged L-PAM and its two known hydrolytic products 4,2-hydroxyethyl 2-chloroethylamino-L-phenylalanine (L-MOH) and 4-[bis(2-hydroxyethyl)amino]-L-phenylalanine (L-DOH). In addition, four other major, previously unknown, metabolites of L-PAM were detected in plasma. At 72 hr, most of the radioactivity was bound to macromolecular components, 26% to plasma macromolecules and 62% in red blood cells. Covalent binding to blood cells was mainly to membrane proteins. Binding to hemoglobin and other soluble components of the red cells was also observed, with a 5000-fold greater affinity for membranes. These studies suggest extensive interaction of melphalan, or its metabolites, with membrane and soluble proteins of red blood cells.  相似文献   

11.
Avitriptan is a new 5-HT1-like agonist with abortive antimigraine properties. The study was conducted to characterize the pharmacokinetics, absolute bioavailability, and disposition of avitriptan after intravenous (iv) and oral administrations of [14C]avitriptan in rats and oral administration of [14C]avitriptan in humans. The doses used were 20 mg/kg iv and oral in the rat, 10 mg iv in humans, and 50 mg oral in humans. The drug was rapidly absorbed after oral administration, with peak plasma concentrations occurring at 0.5 hr postdose. Absolute bioavailability was 19.3% in rats and 17.2% in humans. Renal excretion was a minor route of elimination in both species, with the majority of the dose being excreted in the feces. After a single oral dose, urinary excretion accounted for 10% of the administered dose in rats and 18% of the administered dose in humans, with the remainder excreted in the feces. Extensive biliary excretion was observed in rats. Avitriptan was extensively metabolized after oral administration, with the unchanged drug accounting for 32% and 22% of the total radioactivity in plasma in rats and humans, respectively. Plasma terminal elimination half-life was approximately 1 hr in rats and approximately 5 hr in humans. The drug was extensively distributed in rat tissues, with a tendency to accumulate in the pigmented tissues of the eye.  相似文献   

12.
1. Single oral doses of the hypolipidaemic drug [35S]sultosilic acid to rats (40 mg/kg), dogs (40 mg/kg) and man (7 mg/kg) were well absorbed. During three days, means of 59.2%, 58.8% and 61.8% in urine and 37.7%, 31.9% and 19.7% in faeces, were excreted by these species respectively. Most of the dose was excreted during the first 24 h. 2. Peak plasma levels of 35S were generally reached during 1-2 h after oral doses in rats (12 micrograms equiv./ml), dogs (45 micrograms equiv./ml) and two human subjects (15.2 and 10.3 micrograms equiv./ml). In humans, peak plasma levels of unchanged drug (at 1-1.5 h) were 10.5 and 6.3 micrograms/ml. Plasma concentrations of 35S increased almost proportionately to dose in rats following oral doses of 400 and 1200 mg/kg, although in dogs, concentrations were similar at these two dose levels but several times higher than at 40 mg/kg. 3. Tissue concn. of 35S were generally higher in rats than in dogs. Highest concn. occurred at 3 h in rats and 1 h in dogs. Apart from those in the liver and kidneys, tissue concn. were appreciably lower than the corresponding plasma levels. 4. The major radioactive component in dog urine was sultosilic acid. Rat and human urine contained sultosilic acid and also two more polar major metabolites. In male and female rat urine, the proportions of these excretory products differed and the proportions in male rat urine were similar to those in human urine. Sultosilic acid was also the only component detected in dog plasma, whereas rat and human plasma also contained the two urine metabolites. Dog bile contained a conjugate of sultosilic acid. 5. The two metabolites have been identified by mass spectrometry and nuclear magnetic resonance spectroscopy as products resulting from oxidation of the methyl in the p-toluenesulphonyl group. The structures assigned are the corresponding carboxylic acid and the hydroxymethyl derivatives.  相似文献   

13.
The excretion and metabolism of [3H]tipredane, a novel glucocorticoid, has been studied in mice, rats, marmosets, rhesus and cynomolgus monkeys, and humans. After oral administration, [3H]tipredane was rapidly absorbed, metabolized, and excreted into urine and feces. In mice and male rats, radioactivity was excreted primarily into feces or bile, whereas in female rats, monkeys, and humans, excretion was mainly via the renal route. Some sex differences in the proportions excreted into urine and feces were noted in rodents, with females eliminating relatively more radioactivity in urine. Tipredane was shown to be extensively metabolized, but the routes were highly species-dependent and, in the rat, they were sex-dependent. Unchanged tipredane was not detected in any urine, bile, or blood extracts. Urinary and blood extract profiles indicated that there were between 10 and 30 metabolites in rats and mice, the majority of which constituted < 2% of the dose. In these species, the major pathways involved loss of the thioethyl moiety, S-oxidation of the thiomethyl group, and saturation of the adjacent saturated C16-17 bond. Hydroxylation of the steroid B-ring was seen in the 7 alpha-position in mice and female rats, and in the 6 beta-position in male rats. Metabolism of tipredane in rhesus and cynomolgus monkeys and humans was similar, but less extensive and different to that seen in rodents. The major products, the 6 beta-hydroxylated sulfoxide and sulfone metabolites of tipredane, accounted for 21-36% of the dose in human and monkey urine, and were also major components in blood. In contrast to mice and rats, S-oxidation and an unsaturated C16-17 bond were evident in primates. Metabolism of tipredane was rapid and complex, with significant species differences, although the disposition in rhesus and cynomolgus monkeys seemed to be similar to humans.  相似文献   

14.
The toxicity of pentobarbital was examined in male Wistar rats pretreated with a non-toxic dose of imipramine (10 mg/kg, po). Pentobarbital (70 mg/kg, ip) lethality was enhanced up to 6 hr after imipramine administration, and pentobarbital (45 mg/kg, ip) sleeping time was prolonged up to 12 hr after imipramine. Physiological measurements showed that imipramine pretreatment 2 hr prior to pentobarbital (70 mg/kg, ip) enhanced barbiturate depression in mean blood pressure, oxygen consumption and respiration rate, but not in heart rate or back skin temperature. Analysis of brain radioactivity after [14C] pentobarbital indicated that these effects of imipramine were not solely the result of inhibition of liver metabolism.  相似文献   

15.
Zopolrestat (Alond) is a new drug that is being evaluated as an aldose reductase inhibitor for the treatment of diabetic complications. 14C-labeled zopolrestat was orally administered to rats for a tissue distribution study and a bile duct cannulation metabolism study. Tissue samples from the distribution study were analyzed by complete oxidation and liquid scintillation counting. Urine and bile samples from the bile duct cannulation study were analyzed by microbore HPLC, with simultaneous radioactivity monitoring and atmospheric pressure ionization tandem mass spectrometry. The mass balance in the distribution study demonstrated that the greatest exposure (AUC0-infinity) occurred in the liver, followed by the ileum and large intestine. The time of maximal plasma concentrations for nearly all tissues was 4 hr after the dose, and the half-life of radioactivity in most tissues (8-10 hr) was similar to the half-life in plasma. For the bile duct-cannulated rat study, most of the radioactivity was recovered in the bile, indicating that biliary excretion is a major route of elimination of zopolrestat and its metabolites in rats. Numerous oxidative metabolites, as well as phase II conjugates, were identified in the bile and urine samples. Acyl glucuronides of zopolrestat and unchanged drug accounted for >85% of biliary radioactivity, whereas unchanged drug and degradation products of glutathione conjugates were identified as the major urinary metabolites.  相似文献   

16.
Dual angiotensin-converting enzyme (ACE)/neutral endopeptidase (NEP) inhibitors, by decreasing angiotensin-II production and by preventing the degradation of atrial natriuretic peptide (ANP), may be useful for the treatment of hypertension and congestive heart failure. The thiol dipeptide CGS 30440 (prodrug of CGS 30008, IC50: ACE/NEP = 19/2 nM) administered to rats (10 mg/kg p.o.) inhibited lung tissue ACE activity by 98% and 61% at 1 and 24 hr (P < .001) and inhibited the angiotensin-I pressor response by 75 to 90% for more than 6 hr. Renal tissue NEP activity was reduced by 80% at 1 hr and 73% at 24 hr (P < .001). In rats supplemented with exogenous ANP, CGS 30440 (1 mg/kg p.o.) elevated the concentration of circulating ANP (133%, P < .025) for 4 hr and increased the excretion of urine (300%, P < .001), sodium (194%, P < .025) and cyclic GMP (238%, P < .005). CGS 30440 (10 mg/kg p.o.) administered to hypertensive rats with aortic ligation between the renal arteries (mean arterial blood pressure, 209 +/- 4 mm Hg) produced a 48 mm Hg blood pressure reduction (P < .001) within 4 hr. CGS 30440 given to cynomolgus monkeys at 2 mg/kg inhibited plasma ACE activity by 96% within 1 hr (P < .001), and this inhibition was maintained for 7 and 21 days in monkeys receiving the compound orally at 2.5 mg/kg b.i.d. These studies demonstrate that CGS 30440 is an orally active agent which produces tissue ACE and NEP inhibition in rats and plasma ACE inhibition in primates and suggest that the compound may be useful in the treatment of hypertension and congestive heart failure.  相似文献   

17.
The metabolism of Org 30659 [(17alpha)-17-hydroxy-11-methylene-19-norpregna-4, 15-dien-20-yn-3-one], a new potent progestagen currently under clinical development by NV Organon for use in oral contraceptive and hormone replacement therapy, was studied in vivo after oral administration to rats and monkeys and in vitro using rat, rabbit, monkey, and human liver microsomes and rat and human hepatocytes. After oral administration of [7-3H]Org 30659 to rats and monkeys, Org 30659 was extensively metabolized in both species. Fecal excretion appeared to be the main route of elimination. In rats, opening of the A-ring, resulting in a 2-OH,4-carboxylic acid, 5alpha-H metabolite of Org 30659, was the major metabolic route in vivo. Other metabolic routes involved the introduction of an OH group at C15beta, followed by a shift of the Delta15-double bond to a 16/17-double bond with subsequent removal of the OH group at C17 and reduction of the 3-keto,Delta4 moiety followed by sulfate conjugation of the 3-OH substituent. These metabolic routes observed in vivo were also major routes in incubations with rat hepatocytes. In rat liver microsomes, Org 30659 was metabolized by reduction of the 3-keto,Delta4 moiety. Rat hepatocyte incubations with Org 30659 were more representative of the in vivo metabolism of Org 30659, compared with rat microsomal incubations. Both in vitro and in vivo, the majority of the metabolites were 3alpha-OH,4,5alpha-dihydro derivatives. In monkeys, Org 30659 was mainly metabolized at the C3- and C17-positions in vivo. The 3-keto moiety was reduced to both 3beta-OH and 3alpha-OH substituents. In addition to phase I metabolites, glucuronic acid conjugates were observed in vivo. In monkey liver microsomes, the 6beta-OH metabolite of Org 30659 was the major metabolite present. Similar to the monkey liver microsomes, rabbit and human liver microsomes converted Org 30659 to the 6beta-OH metabolite. This metabolite was also the major metabolite in incubations with human hepatocytes.  相似文献   

18.
Both hypothyroidism and retinol supplementation in rats induce CYP 3A2 and suppress CYP 2C11. Therefore studies were performed to evaluate the role of thyroid hormones in the modulation of P450 expression by retinol. Adult male Sprague-Dawley rats were given retinol as a single oral dose of 75 mg/kg. Rats were killed and hepatic microsomes prepared at 24, 48, 72, and 96 hr following treatment. The catalytic activity of 2C11 was reduced maximally by retinol at 48 hr (by 30%) whereas 3A2 activity was elevated maximally at 24 hr (by 30%). The serum concentration of testosterone was not altered at any time point. However, retinol produced a decline in the concentration of thyroxine by 35% and 43% at 24 and 48 hr, respectively. These data suggest that administration of large doses of retinol may alter hepatic microsomal enzyme expression by perturbation of plasma thyroid hormone levels.  相似文献   

19.
Venlafaxine (VEN), a drug used in the treatment of depression, undergoes significant first-pass metabolism after oral dosing to O-desmethylvenlafaxine (ODV), a metabolite with comparable therapeutic activity to that of parent drug. The pharmacokinetic disposition of VEN was characterized using a "first-pass" model that incorporates a presystemic compartment (liver) to account for the first-pass metabolism of VEN to ODV. A series of differential equations were simultaneously fitted to plasma concentrations of parent and metabolite. A good fit of the model to observed data was demonstrated, generating estimates for the following parameters: ka (1.31 +/- 0.009 hr-1), VVEN (252 +/- 87.6 liters), CLint (65.8 +/- 39.7 liters/hr), RL (liver:plasma partition coefficient, 29.6 +/- 18. 3), VODV (181 +/- 84.1 liters), and CLODV (23.5 +/- 12.5 liters/hr). Parameter estimates correlated closely with those obtained through noncompartmental methods. These results indicate that the time-course disposition of a compound undergoing first-pass hepatic metabolism after oral dosing can be successfully modeled.  相似文献   

20.
2,4-Pentanedione (2,4-PD; CAS No. 123-54-6), an industrial chemical, was investigated for its comparative pharmacokinetics in male Fischer 344 rats by a single intravenous (i.v.) injection of (4.3, 43, 148.5, and 430 mg/kg), or a 6-hr nose-only inhalation exposure (400 ppm) to 14C-2,4-PD. For the i.v. route, the plasma concentration of 14C-2,4-PD-derived radioactivity declined in a biexponential fashion. The overall form of the 14C plasma concentration-time curves and derived pharmacokinetic parameters indicated that dose-linear kinetics occurred in the i.v. dose range 4.3-148.5 mg/kg, but not with 430 mg/kg. Metabolism of 2,4-PD was quite rapid as the concentration of unmetabolized 2,4-PD declined steadily to undetectable after 8 hr. 14C-2,4-PD derived radioactivity was eliminated mainly as 14CO2 and in urine. For the 4.3, 43 and 148.5 mg/kg doses 14CO2 elimination was relatively constant (36.8, 38.8 and 42.3% in 48 hr samples respectively) and greater than urinary excretion (17.9, 14.3 and 29.6%; 48 hr specimens). At 430 mg/kg i.v. there was a reversal of the excretion pattern, with urine 14C excretion (54.7%) becoming greater than that for 14CO2 (27.3%). Excretion in expired volatiles and feces was small. Radiochromatograms of urine showed free 2,4-PD in the 12 hr sample, together with 7 other metabolites. Free 2,4-PD and 6 of the metabolites decreased or were not detectable in a 24 or 48 hr urine sample, but one peak (retention 7.9 min) increased progressively to become the major fraction (97%). Nose-only exposure to 400 ppm 14C-2, 4-PD produced a mean decrease in breathing rate of 20.1%, which was constant and sustained throughout exposure, due to a lengthening of the expiratory phase of the respiratory cycle. 14C-2,4-PD was rapidly absorbed during the first 3 hr of exposure, then began to plateau, but did not reach a steady state. Postexposure elimination of 14C from plasma followed a biexponential form with a t1/2 for the terminal disposition phase of 30.72 hr. Plasma unmetabolized 2,4-PD was present throughout the whole of the exposure phase, but was significantly less than total 14C. Postexposure, plasma unmetabolized 2,4-PD declined rapidly to undetectable concentrations by 12 hr. Radiolabel excretion was approximately equivalent in urine (37.6%) and expired 14CO2 (36.3%). Urine radiochromatograms showed a minor 2,4-PD contaminant (0.6-5.9% over 48 hr), along with 7 other peaks probably representing metabolites. As with the 148.5 mg/kg i.v. dose, the major metabolite peak was at 7.8 min retention, increasing from 41.1% (12 hr) to 62.8% (48 hr). Immediately postexposure, radioactivity was present in all tissues examined, but on a concentration basis (microgram equiv/g) there was no preferential accumulation of 14C in any tissue or organ. On a total organ basis, highest contents were in liver and kidney, presumably related to the metabolism and excretion of 2,4-PD. By 48 hr postexposure, concentrations had decreased in all tissues except fat, presumably due to the lipophilicity of 14C residues. The profile of the plasma-time radioactivity curves, and the presence of residual radioactivity in tissues at 48 hr postexposure, suggests that a cumulative process could occur with frequent repeated exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号