首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We study the power allocation problem in a transmit diversity wireless system with mean channel gain information. In Rayleigh fading for a given set of mean channel gains and nodes, we seek to find the power allocation that minimizes the outage probability subject to a total power constraint. The optimal solution is shown to be computationally intensive when the number of channels is large. Instead, we derive a simple solution based on the upper bound to the outage probability which can be summarized as equal power allocation with channel selection. Numerical results show that the proposed solution is near-optimal over a wide range of parameter values. The problem addressed and the solution are relevant to a decode-and-forward cooperative relaying system with only partial channel information available to the relays.  相似文献   

2.
The problem of optimizing resource allocation over a half-duplex relay channel with noisy channel state information at the source transmitter (CSIT) is studied, with a focus on the asymptotically high signal-to-noise ratio (SNR) regime. A novel upper bound on the diversity-multiplexing tradeoff (DMT) is derived, taking into account the quality of the CSIT. It is shown that from a DMT perspective, the decode-and-forward (DF) protocol is strictly optimal over a certain range of the multiplexing gains. When the quality of the CSIT is sufficiently high, the DMT performance of the DF protocol with noisy CSIT equals that of the dynamic DF protocol shifted above by a constant diversity gain, which depends only on the quality of the CSIT about the source-destination link. When the quality of the CSIT reduces, DF relaying is still DMT-optimal, but only over a smaller range of the multiplexing gains. In an intermediate range of the multiplexing gains, nonorthogonal schemes provide some additional gains when the CSIT quality is sufficiently low. It is also shown that the DMT of the amplify-and-forward (AF) protocol is offset by a constant term depending on the quality of the CSIT of the source-destination link only.  相似文献   

3.
Wireless systems employing multiple antennas at the transmitter and the receiver have been shown to have the potential of achieving extraordinary bit rates. Orthogonal frequency division multiplexing (OFDM) significantly reduces the receiver complexity in multiantenna broadband systems. We introduce an algorithm for blind channel identification and equalization in OFDM-based multiantenna systems. Our approach uses second-order cyclostationary statistics, employs antenna precoding, and yields unique channel estimates (up to a phase rotation for each transmit antenna). Furthermore, it requires only an upper bound on the channel order, it does not impose restrictions on channel zeros, and it exhibits low sensitivity to stationary noise. We present simulation results demonstrating the channel estimator and the corresponding multichannel equalizer performance.  相似文献   

4.
In this paper, we propose a cooperative transmission scheme using quasi-orthogonal space-time block codes (QOSTBCs) for multiple-input multiple-output (MIMO) relay networks. Comparing with the conventional cooperative transmission scheme using orthogonal space-time block codes (OSTBCs), the proposed scheme can achieve higher bandwidth efficiency with the same decoding complexity. Moreover, an adaptive decode-and-forward (ADF) relaying protocol is proposed based on one-bit channel state information (CSI) feedback. According to the CSI feedback, a better transmission mode can be selected between the direct transmission and decode-and-forward (DF) cooperative transmission. In addition, the outage performance of the proposed scheme is investigated and a closed-form upper bound on the outage probability is derived. The performance analysis shows that the proposed scheme can achieve a full diversity order, which is higher than that of the direct and DF cooperative transmissions.  相似文献   

5.
Orthogonal space-time block coding (OSTBC) is a recent technique that provides maximal diversity gains on a space-time channel at a very modest computational cost. Recently, several authors have suggested to improve the performance of an OSTBC system by using a feedback of channel state information from the receiver to the transmitter. In this letter, we study the performance of an OSTBC system with quantized low-rate feedback. We establish conditions under which the system achieves full diversity and we also analyze the performance of a method that employs a feedback consisting of only one information bit.  相似文献   

6.
Multiple antenna transmission and reception have been shown to significantly increase the achievable data rates of wireless systems. However, most of the existing analysis assumes perfect or no channel information at the receiver and transmitter. The performance gap between these extreme channel assumptions is large and most practical systems lie in between. Therefore, it is important to analyze multiple antenna systems in the presence of partial channel information. We upper bound the outage probability performance of multiple antenna systems with preamble-based channel estimation and quantized feedback. We design causal feedback and power control schemes to minimize this upper bound on outage probability. We consider the following practical issues in our analysis and design: (1) the channel information is imperfect both at the receiver and at the transmitter and (2) part of the total available resources for the system need to be used for estimation and feedback. Our results demonstrate that for block fading channels, sending a periodic preamble and causally receiving channel state information via a feedback channel can lead to substantial gains in the outage performance over any nonfeedback scheme. Most of the gains achieved by perfect feedback can be achieved by very few bits of feedback. Furthermore, it is demonstrated that these outage probability gains can be translated into improvements in frame error rate performance of systems using space-time codes. Thus, implementing a power control, even at the cost of reduced spectral resources for the forward channel is beneficial for block fading channels  相似文献   

7.
In wideband code-division multiple-access (CDMA) systems, where large diversity gains are used to mitigate the effects of multipath fading, system performance is increasingly limited by channel estimation error. In a packet-based system, the estimation error can be reduced by increasing the header length; however this, for a fixed bandwidth, reduces the amount of transmit energy available to the data symbols and reduces the processing gain of the system. To determine the allocation of the transmit energy between the data and estimation symbols in order to minimize the probability of bit error, we use an approximate upper bound on the probability of bit error for a RAKE receiver operating with imperfect phase estimates  相似文献   

8.
Differential modulation for two-user cooperative diversity systems   总被引:5,自引:0,他引:5  
This paper introduces a novel differential modulation scheme for a two-user cooperative diversity system which does not require channel state information at either the users or the destination. The performance of fixed decode-and-forward and selection relaying protocols is evaluated in both symmetric and asymmetric interuser-channel cases. The lower bound on the performance of the decode-and-forward protocol is given, while the exact bit-error probability of the selection relaying protocol is thoroughly derived. The decode-and-forward relaying protocol achieves a performance gain when the signal-to-noise ratios in the interuser channels are symmetric and sufficiently high. The selection relaying protocol shows a larger performance gain and does not exhibit an error floor like in the case of the decode-and-forward protocol. In addition, it is robust to the asymmetric interuser channels.  相似文献   

9.
Multiuser diversity gain is an effective technique for improving the performance of wireless networks. This gain can be exploited by scheduling the users with the best current channel conditions. However, this kind of scheduling requires that the base station (or access point) knows some kind of channel quality indicator (CQI) information for every user in the system. When the wireless link lacks channel reciprocity, each user must feed back this CQI information to the base station. The required feedback load makes exploiting multiuser diversity extremely difficult when the number of users becomes large. To alleviate this problem, this paper considers a contention-based CQI feedback where only users whose channel gains are larger than a threshold are allowed to transmit their CQI information through a spread-spectrum based contention channel. Considering the capture effect in this contention channel, it is shown that i) the multiuser diversity gain can be exploited regardless of the number of transmit antennas at the base station and ii) the total system throughput exponentially approaches that of the full feedback scheme as the spreading code length of the contention channel linearly increases. In addition, it is also shown that multiuser diversity can be maintained with the feedback delay of time-variant channels. We also consider the issue of differentiated rate scheduling, in which the base station gives different rates to different subsets of mobiles. In this scenario, mobiles feed back their CQI with some access probability, and we show this technique causes only a negligible throughput loss compared to the case without supporting differentiated rate.  相似文献   

10.
Cooperative Strategies and Capacity Theorems for Relay Networks   总被引:11,自引:0,他引:11  
Coding strategies that exploit node cooperation are developed for relay networks. Two basic schemes are studied: the relays decode-and-forward the source message to the destination, or they compress-and-forward their channel outputs to the destination. The decode-and-forward scheme is a variant of multihopping, but in addition to having the relays successively decode the message, the transmitters cooperate and each receiver uses several or all of its past channel output blocks to decode. For the compress-and-forward scheme, the relays take advantage of the statistical dependence between their channel outputs and the destination's channel output. The strategies are applied to wireless channels, and it is shown that decode-and-forward achieves the ergodic capacity with phase fading if phase information is available only locally, and if the relays are near the source node. The ergodic capacity coincides with the rate of a distributed antenna array with full cooperation even though the transmitting antennas are not colocated. The capacity results generalize broadly, including to multiantenna transmission with Rayleigh fading, single-bounce fading, certain quasi-static fading problems, cases where partial channel knowledge is available at the transmitters, and cases where local user cooperation is permitted. The results further extend to multisource and multidestination networks such as multiaccess and broadcast relay channels.  相似文献   

11.
该文针对无线传感网中的远距传输问题,研究了一种无需网络同步和正交信道的协作分集方法的性能,给出了在两种典型信道中当解码转发存在误差传播时远程目的节点的误码率及分集指数;分析了当转发节点间为白高斯信道时增加协作节点数能够提高目的节点性能的条件。研究结果表明,当转发节点间为白高斯信道时,只要转发节点处于正常工作点,增加节点数就能提高目的节点的性能;当转发节点间为瑞利平衰落信道时,只有当转发节点处于一定位置时,协作分集相对于直接发送或传统空间分集才有性能增益;当转发节点间为瑞利平衰落信道时增加跳数性能更好,为白高斯信道时增加分支数更有效;当转发节点间为瑞利平衰落信道时,误差传播将使目的节点的分集指数为1,但在较低信噪比条件下对分集性能影响很小。  相似文献   

12.
An optimal cooperation strategy, decode-to-cooperate, is proposed and investigated for performance improvements in dual-hop wireless relay networks. Based on decode-and-forward (DF) strategy with multiple relay selection, we design a novel scheme such that the source node keeps transmitting sequentially and the selected relays cooperate by transmitting the decoded signal using distributed Alamouti coding. We exploit the multipath propagation effect of the wireless channel to achieve lower probability of error and introduce optimum power allocation and relay positioning. We analyze the scenario when the source to destination direct link is not available and derive a closed form expression for symbol error rate (SER), its upper bound and an asymptotically tight approximation to exploit the performance gain by selecting the optimum relays in a multiple-relay cooperation scheme. Moreover, asymptotic optimum power allocation (based on the SER approximation) and optimal relay positioning are also considered to further improve the SER. The proposed relay selection scheme outperforms cooperative (DF) and non-cooperative schemes by more than 2 dB.  相似文献   

13.
In this letter, the problem of adjacent channel interference (ACI) caused by the close packing of constant envelope MSK-type users in a given frequency band is considered. An optimal receiver filter, based on the theory of matched filtering, is found, and it serves as an upper bound on the signal-to-interference ratio. The intersymbol interference (ISI) caused by the time response of the matched filter is eliminated by a decision feedback equalizer (DFE) which, however, degrades performance. It was found that the matched-filter upper bound allows about 3-15 dB more ACI than the performance of a classical correlation detector (for additive white Gaussian noise only), depending on the frequency separation between channels. The DFE performance is only a little bit worse than that of the matched filter  相似文献   

14.
王文益  吴仁彪  梁军利 《电子学报》2010,38(4):771-0775
 本文研究了一种正交中继信道的信道容量及资源分配问题。其中,源节点到中继节点之间的信道与源节点和中继节点到目的节点之间的信道在时间上相互正交。论文首先求出了系统的信道容量上界及下界,且中继策略为部分译码-转发时,上界和下界相等,从而给出了信道容量。对于高斯正交中继信道,为了最大化信道容量,论文还研究了各种系统资源的优化问题,包括时间、功率等。仿真结果表明,仅对信道的时间分配参数进行优化与优化所有的参数相比,信道容量损失很小,且给出了此时最优时间分配的解析解。  相似文献   

15.
A new suboptimal demodulator based on iterative decision feedback demodulation (DFD), and a singular value decomposition (SVD) for estimation of unitary matrices, is introduced. Noncoherent communication over the Rayleigh flat-fading channel with multiple transmit and receive antennas, where no channel state information (CSI) is available at the receiver is investigated. With four transmit antennas, codes achieving bit-error rate (BER) lower than 10/sup -4/ at bit energy over the noise spectral density ratio (E/sub b//N/sub o/) of -0.25 dB up to 3.5 dB, with coding rates of 1.6875 to 5.06 bits per channel use were found. The performance is compared to the mutual information upper bound of the capacity attaining isotropically random (IR) unitary transmit matrices. The codes achieve BER lower than 10/sup -4/ at E/sub b//N/sub o/ of 3.2 dB to 5.8 dB from this bound. System performance including the iterative DFD algorithm is compared to the one using Euclidean distance, as a reliability measure for demodulation . The DFD system presents a performance gain of up to 1.5 dB. Uncoded systems doing iterative DFD demodulation and idealized pilot sequence assisted modulation (PSAM) detection are compared. Iterative DFD introduces a gain of more than 1.2 dB. The coded system comprises a serial concatenation of turbo code and a unitary matrix differential modulation code. The receiver employs the high-performance coupled iterative decoding of the turbo code and the modulation code. Information-theoretic arguments are harnessed to form guidelines for code design and to evaluate performance of the iterative decoder.  相似文献   

16.
In this paper, the feedback load reduction problem in wireless systems based on orthogonal frequency division multiplexing (OFDM) is investigated and an opportunistic feedback scheme (OFS) is proposed. The key idea behind OFS is that only the key channel gains which can significantly affect the system throughput are fed back to the BS. Firstly, the key channel gains are proved to belong to a channel gain interval. Secondly, a statistical method is proposed to estimate the channel gain interval. Thirdly, the opportunistic feedback scheme is formulated and the feedback load of OFS is analyzed. The advantage of OFS is threefold: the first is OFS can work in both OFDM-based multicast system and OFDM-based unicast system. The second is the channel fading type of the BS-user link is not required, which is more realistic. The third is OFS can get better feedback load performance compared with other schemes, while achieving almost the same throughput performance compared with that of full feedback scheme.  相似文献   

17.
rdquoWe investigate the performance of the broadcast approach for various fading distributions, which correspond to different models of partial transmit channel state information (CSI). The first model considered is the quantized limited feedback. In this model, the receiver can send as feedback only a finite number of bits describing the fading gain. We derive the optimal power allocation for the broadcast approach for the quantized feedback model. For a Rayleigh fading channel, numerical results here show that if the feedback word can be longer than one bit, the broadcasting gain becomes negligible, due to diminished channel uncertainty. The second partial transmit CSI model is a stochastic Gaussian model with mean and variance information, which is commonly used for modeling the channel estimation error. In a single-input single-output (SISO) channel, this model also corresponds to the Ricean fading distribution, for which we derive maximal achievable broadcasting rates. We further consider a multiple-input single-output (MISO) channel, and derive the optimal power allocation strategy in a broadcast approach. Numerical results here show that uniform power allocation is preferable over beamforming power allocation in the region where broadcasting gain over single level coding is non-negligible.  相似文献   

18.
Opportunistic Beamforming with Limited Feedback   总被引:1,自引:0,他引:1  
This work investigates the following question: subject to strictly limited (finite-rate) feedback in a multi-user multi-antenna system, what channel state information (CSI) should we send back to the transmitter, and how should it be used? Considering the class of single-beam systems, we suggest a combination of beamforming (array gain) and multi-user diversity. It has been shown that in single antenna systems, one bit of feedback per user can capture almost all gains available due to multi-user diversity, therefore we propose and analyze a compound strategy that uses one bit for multi-user diversity and any further feedback bits for beamforming. We obtain the scaling laws of this compound strategy, showing that it scales as well as any single-beam system with full transmit-CSI.  相似文献   

19.
This paper investigates a quantized beamforming system with feedback delay. A linear channel predictor is used to cope with the feedback delay. We derive an upper bound on the symbol error rate (SER) of phaseshift keying (PSK) signal. Based on the bound, we design a predictor that provides good error performance. We also demonstrate that the beamformer design methods developed in a delay-free scenario are applicable to the system with feedback delay.  相似文献   

20.
To overcome the overhead involved with channel estimation, several non-coherent distributed space–time coding (DSTC) strategies for two-way wireless relay networks (TWRNs) using the amplify-and-forward and the decode-and-forward protocol have been recently proposed that do not require channel state information (CSI) at any node to decode the information symbols. In this paper, novel differential DSTC strategies for TWRNs using the two- and three-phase protocol are proposed. In our transmission schemes, the relays do not waste power to transmit information known at the respective destination nodes. This is achieved by combining the symbols from both terminals received at the relays into a single symbol of the unaltered constellation. Furthermore, in our strategies, the direct link between the communicating terminals can be naturally incorporated to further improve the diversity gain. Simulations show a substantially improved performance in terms of bit error rate (BER) of the proposed strategies as compared to the existing strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号