首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five-axis milling mechanics for complex free form surfaces   总被引:2,自引:0,他引:2  
Accurate and fast prediction of machining forces is important in high performance cutting of free form surfaces that are commonly used in aerospace, automotive, biomedical and die/mold industries. This paper presents a novel and generalized approach for prediction of cutting forces in five-axis machining of parts with complex free form surfaces. Engagement simulations between cutter and part are performed precisely along the tool path by a recently developed boundary representation method. Moreover, mathematical model for five-axis milling mechanics is developed for any given solid model of parts with complex free form surfaces. Theoretical simulations and experimental validations show that cutting forces are predicted fast and precisely for five-axis machining of complex free form surfaces.  相似文献   

2.
The fabrication of high-quality freeform surfaces is based on ultra-precision raster milling, which allows direct machining of the freeform surfaces with sub-micrometric form accuracy and nanometric surface finish. Ultra-precision raster milling is an emerging manufacturing technology for the fabrication of high-precision and high-quality components with a surface roughness of less than 10 nm and a form error of less than 0.2 μm without the need for any additional post-processing. Moreover, the quality of a raster milled surface is based on a proper selection of cutting conditions and cutting strategies.Due to different cutting mechanics, the process factors affecting the surface quality are more complicated, as compared with ultra-precision diamond turning and conventional milling, such as swing distance and step distance. This paper presents a theoretical and experimental analysis of nano-surface generation in ultra-precision raster milling. Theoretical models for the prediction of surface roughness are built. An optimization system is established based on the theoretical models for the optimization of cutting conditions and cutting strategy in ultra-precision raster milling. A series of experiments have conducted and the results show that the theoretical models predict well the trend of the variation of surface roughness under different cutting conditions and cutting strategies.  相似文献   

3.
In plunge milling operation the tool is fed in the direction of the spindle axis which has the highest structural rigidity, leading to the excess high cutting efficiency. Plunge milling operation is one of the most effective methods and widely used for mass material removal in rough/semi-rough process while machining high strength steel and heat-resistant-super-alloys. Cutting parameters selection plays great role in plunge milling process since the cutting force as well as the milling stability lobe is sensitive to the machining parameters. However, the intensive studies of this issue are insufficient by researchers and engineers. In this paper a new cutting model is developed to predict the plunge milling force based on the more precise plunge milling geometry. In this model, the step of cut as well as radial cutting width is taken into account for chip thickness calculation. Frequency domain method is employed to estimate the stability of the machining process. Based on the prediction of the cutting force and milling stability, we present a strategy to optimize the cutting parameters of plunge milling process. Cutting tests of heat-resistant-super-alloys with double inserts are conducted to validate the developed cutting force and cutting parameters optimization models.  相似文献   

4.
E. Budak  B.U. Guzel 《CIRP Annals》2004,53(1):103-106
In this paper, an enhanced mathematical model is presented for the prediction of cutting force system in ball end milling of sculptured surfaces. This force model is also used as the basis for off-line feed rate scheduling along the tool path in order to decrease the cycle time in sculptured surface machining. As an alternative for setting a constant feed rate all along the tool path in rough machining of sculptured surfaces, resultant cutting forces are aimed to be kept under a pre-set threshold value along the tool path by off-line scheduled piecewise variable feed rates. In this paper, it is shown that machining time, depending on complexity of sculptured surfaces, can be decreased significantly by scheduling feed rate along the tool path. The model is tested under various cutting conditions and some of the results are also presented and discussed in the paper.  相似文献   

5.
落海伟 《机床与液压》2023,51(19):58-64
针对五轴铣削中刀具位姿变化和刀具类型差异所导致的铣削力预测难的问题,提出通用立铣刀五轴铣削力计算方法。基于通用立铣刀结构形式,建立通用立铣刀几何模型;综合考虑刀齿真实运动轨迹和刀具姿态变化,构建刀具瞬时切屑厚度模型;将刀具沿轴线方向等分成若干切削刃微元,并根据线性切削力假设建立刀具微元铣削力;将微元铣削力从刀具坐标系转换至工件坐标系下,并沿刀具轴向铣削深度进行积分,获得通用立铣刀的五轴铣削力模型;最后,在混联五轴数控加工实验平台上开展了铣削力测试。实测结果表明:所提铣削力计算方法正确有效,可作为后续五轴铣削工艺参数优选的理论依据。  相似文献   

6.
Simulation of flank milling processes   总被引:4,自引:0,他引:4  
The paper presents prediction of cutting forces when flank milling ruled surfaces with tapered, helical, ball end mills. The geometric model of the workpiece is imported from standard CAD systems, and the tapered helical ball end mill is modeled as the combination of sphere and cone primitives in ACIS© solid modeling environment. The intersection of cutter and part with a ruled surface is evaluated, and the cutter entry into and exit angles from the work material are modeled, and stored as a function of tool center coordinates along the path. The cutter entry and exit angles, the immersion angles, are used as boundary conditions in predicting the cutting forces along the path. The methodology allows prediction of cutting load distribution on the tool and part, as well optimization of machining cycle times by scheduling the feedrate in such a way that torque, power and static deflections can be maintained at safe levels.  相似文献   

7.
张跃  张建中  张衡 《机床与液压》2014,42(19):64-68
研究利用数控铣床的逻辑控制系统进行工作台的脉冲式的进给,实现脉冲切削力作用的分离型的数控振动铣削。研究了脉冲振动方向沿进给方向的振动铣削和脉冲振动方向与进给方向成一定角度的振动铣削过程,并对铣削过程进行了切削力对比试验。试验结果表明:脉冲振动方向与进给方向成一定角度的振动铣削可以降低铣削力,强化铣削过程,降低切削温度,对表面粗糙度影响不大;随进给路线、逻辑关系的不同,切削效果差别很大。  相似文献   

8.
对于数控机床加工铣削参数优化多采用常规的可信度近似模型,但该方法易受到材料失效应变系数的影响,导致优化后的加工效率较低,提出基于改进遗传算法的数控机床加工铣削参数优化方法。根据工件的本构模型,对切削刃进行采样抽取,确定最小铣削力波动位置;引入材料失效准则计算材料失效应变系数,基于此,以加工时间最短、加工成本最低和加工能耗消耗最小为目标建立铣削参数优化模型,并采用改进遗传算法求解模型,通过迭代适应度值,输出最佳铣削参数;最后,采用对比实验的形式对所提方法的优化性能进行测试。测试结果表明:应用所提方法对数控机床加工铣削参数进行优化后,能够有效缩短切削时间,提高加工效率。  相似文献   

9.
This paper presents a novel method for cutting force modeling related to peripheral milling of curved surfaces including the effect of cutter runout, which often changes the rotation radii of cutting points. Emphasis is put on how to efficiently incorporate the continuously changing workpiece geometry along the tool path into the calculation procedure of tool position, feed direction, instantaneous uncut chip thickness (IUCT) and entry/exit angles, which are required in the calculation of cutting force. Mathematical models are derived in detail to calculate these process parameters in occurrence of cutter runout. On the basis of developed models, some key techniques related to the prediction of the instantaneous cutting forces in peripheral milling of curved surfaces are suggested together with a whole simulation procedure. Experiments are performed to verify the predicted cutting forces; meanwhile, the efficiency of the proposed method is highlighted by a comparative study of the existing method taken from the literature.  相似文献   

10.
机器人铣削加工让刀误差建模与分析   总被引:1,自引:0,他引:1  
在机器人切削加工工艺过程中,让刀误差是影响切削加工精度的重要因素之一。以球头铣刀铣削加工为研究对象,视其为准静态运动过程,根据机器人静弹性力学模型和球头铣刀切削力模型,建立了机器人切削过程的让刀误差数学模型。同时,提出了一种基于基因遗传算法的刀具姿态优化方法,以减小切削过程的让刀误差。最后,通过仿真分析了切削参数、刀具姿态和机器人刚度等因素对让刀误差的影响,验证了刀具姿态优化方法的可行性。  相似文献   

11.
Cutting force prediction of sculptured surface ball-end milling using Z-map   总被引:7,自引:0,他引:7  
The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.  相似文献   

12.
Sculpture surface machining is a critical process commonly used in various industries such as the automobile, aerospace, die/mold industries. Since there is a lack of scientific tools in practical process planning stages, feedrates for CNC machining are selected based on the trial errors and previous experiences. In the selections of the process parameters, production-planning engineers are conservative in order to avoid undesirable results such as chipping, cutter breakage or over-cut due to excessive cutter deflection. Currently, commonly used CAD/CAM programs use only the geometric and volumetric analysis, but not the physics of the processes, and rely on experience based cutting tool database and users’ inputs for selection of the process parameters such as feed and speed. Usually, the feeds and cutting speeds are set individual constant values all along the roughing, semi-finishing, and finishing processes. Being too conservative and setting feedrate constant all along the tool path in machining of sculpture surfaces can be quite costly for the manufacturers. However, a force model based on the physics of the cutting process will be greatly beneficial for varying the feedrate piecewise along the tool path.The model presented here is the first stage in order to integrate the physics of the ball-end milling process into the selection of the feeds during the sculpture surface machining. Therefore, in this paper, an enhanced mathematical model is presented for the prediction of cutting force system in ball end milling of sculpture surfaces. This physical force model is used for selecting varying and ‘appropriate’ feed values along the tool path in order to decrease the cycle time in sculpture surface machining. The model is tested under various machining conditions, and some of the results are also presented in the paper.  相似文献   

13.
In this paper, the form error reduction method is presented in side wall machining. Cutting forces and tool deflection are calculated considering surface profile generated by the previous cutting such as roughing and semi-finishing. Using the form error prediction from tool deflection curve, the effects of tool teeth numbers, tool geometry and cutting conditions on the form error are analyzed. The characteristics and the differences of generated surface shape in up and down milling are also discussed and over-cut free condition in up milling is presented. The form error reduction method through successive down and up milling has been suggested. The effectiveness and usefulness of the suggested method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that the form error prediction from tool deflection in side wall machining can be used in proper cutting condition selection and real time surface error simulation for CAD/CAM systems. This research also contributes to cutting process optimization for the improvement of form accuracy in die and mold manufacture.  相似文献   

14.
Micro-end-milling of single-crystal silicon   总被引:1,自引:0,他引:1  
Ductile-regime machining of silicon using micro-end-mill is almost impossible because of the brittle properties of silicon, crystal orientation effects, edge radius of the cutter and the hardness of tool materials. Micro-end-milling can potentially be used to create desired three dimensional (3D) free form surface features using the ductile machining technology for single-crystal silicon. There is still a lack of fundamental understanding of micro-end-milling of single-crystal silicon using diamond-coated tool, specifically basic understanding of material removal mechanism, cutting forces and machined surface integrity in micro-scale machining of silicon. In this paper, further research to understand the chip formation mechanism was conducted. An analysis was performed to discover how the chips are removed during the milling process. Brittle and ductile cutting regimes corresponding to machined surfaces and chips are discussed. Experiments have shown that single-crystal silicon can be ductile machined using micro-end-milling process. Forces generated when micro-end-milling single-crystal silicon are used to determine the performance of the milling process. Experimental results show that the dependence of the cutting force on the uncut chip thickness can be well described by a polynomial function order n. As cutting regime becomes more brittle, the cutting force has more complex function.  相似文献   

15.
The study of machining errors caused by tool deflection in the balkend milling process involves four issues, namely the chip geometry, the cutting force, the tool deflection and the deflection sensitivity of the surface geometry. In this paper, chip geometry and cutting force are investigated. The study on chip geometry includes the undeformed radial chip thickness, the chip engagement surface and the relationship between feed boundary and feed angle. For cutting force prediction, a rigid force model and a flexible force model are developed. Instantaneous cutting forces of a machining experiment for two 2D sculptured surfaces produced by the ball-end milling process are simulated using these force models and are verified by force measurements. This information is used in Part 2 of this paper, together with a tool deflection model and the deflection sensitivity of the surface geometry, to predict the machining errors of the machined sculptured surfaces.  相似文献   

16.
针对数控铣床在切削过程中产生的振动对工件表面质量的影响,提出以低振动和高表面质量为优化目标,对切削参数进行优化。以VDF-850A铣床为研究对象对45号钢进行铣削正交试验,通过建立振动采集系统,采集振动信号提取振动特征值并测量工件表面粗糙度值,应用最小二乘法拟合数据建立了振动和粗糙度数学模型。利用层次分析法确定两目标函数权重,使用平方和加权法对两目标函数加权拟合成综合目标评价函数,运用粒子群算法优化切削参数。试验结果表明:应用粒子群算法优化后的切削参数进行加工可有效的降低振动和提高表面质量。  相似文献   

17.
走刀方向对数控加工的效率有重要影响,尤其对于多曲面拼接自由曲面不规则轮廓区域的数控加工。针对现有自由曲面数控加工过程走刀方向优化研究存在的问题,提出了基于曲面数控加工区域划分的走刀方向优化策略,建立了简化的刀具轨迹计算模型和加工时间模型,并用实例加以验证,取得了满意的效果。  相似文献   

18.
杨禹  胡小秋  马耀 《机床与液压》2021,49(18):123-126
针对钛合金难加工问题,将超声振动引入到对钛合金的铣削加工中,实现刀具、工件周期性接触分离,从而降低切削力、改善加工质量。以TC4为研究对象,以切削力为研究切入点,通过ABAQUS建立三维铣削仿真模型。对比分析超声铣削和普通铣削在切削力曲线特征以及数值大小上的差别,并通过观察切屑特征分析切削力的波动及稳定性。结果表明:轴向振动铣削有利于降低铣削过程中的切削力,提高切削稳定性。  相似文献   

19.
薄壁件加工过程因切削力波动较大可导致切削过程不平稳,需对加工工艺进行优化。建立了镍基合金Inconel718薄壁件铣削加工数控编程优化模型,模型由数控编程、材料数据库和数控加工仿真3个模块组成。在UG中建立工件实体模型,并生成相应NC加工代码;基于Power Law本构方程,考虑材料热力学动态性能和材料分离准则对切削力和切削温度的影响,采用有限元仿真软件AdvantEdge FEM获得镍基合金车削加工的切削力和切削温度等参数;将工件毛坯模型、NC加工代码、材料数据导入Production Module中,对加工过程进行优化。结果表明:利用优化后的数控程序进行加工,可减小切削力波动,有助于改善薄壁件加工过程中的稳定性。  相似文献   

20.
In this paper, a new method for tool positioning in milling on torus cutters with round inserts is presented. A new criterion associated with balancing of the transversal cutting force is used to compute a tool orientation. The considered tool inclination is towards the back of the tool. In this case, all inserts work simultaneously and generate a continuous cutting phenomenon. Each of the inserts produces a transversal cutting force; some being positive while others are negative. A small tool axis inclination angle leads to balancing the transversal cutting force exerted on the tool and then reducing deflection and vibrations in milling operations. Firstly, this approach to the dynamic aspects relating to cutting forces in the milling process is significant for mould and die manufacturing since it allows polishing time to be reduced. In addition, as vibrations are reduced, enhanced surface quality can be obtained directly on free-form surfaces such as aeronautic fittings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号