首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.  相似文献   

2.
Bakery shortenings prepared by hydrogenation contain high levels of trans fatty acids, which are considered to be risk factors for cardiovascular disease. The shortenings prepared from maogo kernel and mahua fats have no trans fatty acids. Mahua fat was fractionated by dry fractionation to obtain a high-melting fraction (10% yield, Mh1). Mango fat was fractionated by two-stage solvent fractionation, separating about 15% high-melting fraction (Mk1) in the first stage, followed by 40% stearin (Mk2) in the second stage. The formulation containing 80% Mh1 and 20% of mango middle stearin fraction (Mk2) showed melting characteristics and onset and enthalpy of crystallization similar to those of commercial hydrogenated shortenings designed for cakes and biscuits. The formulation suitable for puff pastry shortening was prepared by blending 50% mango 1st stearin (Mk1) and 50% mahua fat with addition of 5–7% of fully hydrogenated vegetable oil. The formulations having melting characteristics similar to those of commercial cake and biscuit shortenings were also prepared by blending 40% mango fat and 60% mahua fat with 5–7% incorporation of fully hydrogenated peanut oil. However, these formulations showed delayed transition to the stable forms compared to those of commercial samples. Fatty acid composition revealed that commercial hydrogenated shortenings consisted of 18–29% trans oleic acid, whereas the formulations we prepared did not contain any trans acids. The iodine values of commercial samples were 57–58, whereas the value for the formulations prepared were 47–53. The consistency of the prepared samples as measured by cone penetrometer was slightly harder than commercial samples. These studies showed that it is possible to prepare bakery shortenings with no trans fatty acids by using mango and mahua fats and their fractions.  相似文献   

3.
Cake shortening is an important ingredient that imparts taste and texture in the cake as the final product. Hydrogenated shortenings contain high amounts of trans fatty acids, which is considered a risk factor for obesity, cancers, and cardiovascular diseases. In this research, chemically interesterified blends of canola oil (CO) and palm stearin (PS) were recruited in order to formulate zero‐trans shortening, specifically for cake application. The optimization of shortening formulation was performed by Design‐Expert software, considering melting, congelation, textural, and rheological properties of cake shortening as responses. The formulated shortening in the weight ratio of 66.41:33.58 (PS:CO) (%, w/w) was analyzed and compared with two commercial cake shortenings in terms of fatty acid and triacylglycerol composition, slip melting point (SMP), solid fat content (SFC), and rheological and textural properties. The results showed that the formulated zero‐trans cake shortening with 0.2% trans, 47.2% saturated fatty acids, SMP of 40.9 °C, SFC of 10.51% at 37 °C, firmness of 1522.5 g, and linear viscoelastic range of 0.035% had the most acceptable criteria among cake‐shortening samples. The findings of this study offer insights into the relationship between shortening functionality and physicochemical properties and serve as a base for future studies on zero‐trans shortenings formulation.  相似文献   

4.
A number of North American vegetable and animal fat shortenings, which had been analyzed previously for their physical and textural characteristics, were analyzed also for their chemical composition. The fatty acid and triglyceride composition of the solids were calculated by analyzing the composition of the original product and the liquid phase, and by determination of the solid fat content (SFC) of the fat. The solids were also isolated by isopropanol (IP) separation, and the high melting glycerides (HMG) by acetone crystallization at 15°C. There was not much difference in total saturates andtrans content between vegetable and animal fat shortenings. Changing formulations from soy-palm to soy-cottonseed does not change the total saturates plustrans content. The solids of the vegetable shortenings in the β form contained about 20% of 16:0, those in the β′ form 30% or more. The animal fat shortenings were mainly in the β form, their solids contained 30% or more of 16:0. C54 triglyceride content of the solids of β vegetable shortenings (calculated and IP-separated) was >45%, that of all animal fats was <25%. Solids of animal fat shortenings contain high levels of C52. The C54 triglycerides are β-tending and should be kept low in vegetable shortening. In the HMG the C54 should not exceed 30%. This can only be achieved by incorporation of a β′ hard fat, preferably palm hard fat. Animal fat, especially lard, crystallizes in the β form because the palmitic acid in the glyceride molecule is located in the 2-position, whereas those of vegetable fats are in the 1- and 3-position.  相似文献   

5.
Safflower oil-based oleogels were produced from beeswax and rice bran wax. Oleogels demonstrated higher oxidative stability than shortening at the cooking temperature. Peroxide values in shortening, rice bran wax oleogels, and beeswax oleogels samples were found in the range of 4.8–27.76, 13.21–20.45 and 4.30–7.72 meqO2kg−1 oil. Following oleogelation, there was no significant change in fatty acid composition of safflower oil. In addition, after baking process, the changes in the major fatty acids were not determined to be significant. Solid fat content ratios (carried out at 35°C) of rice bran wax oleogels, in beeswax oleogels and in shortening samples were defined in the range of 4.10%–7.70%, 0.80%–5.00%, and 9.61%, respectively. The highest oil binding capacity was revealed in beeswax oleogels with 99.93%–99.98%. The shortest crystallization time was determined as 3 min in oleogel containing 10% rice bran wax. Cakes consisted of oleogel were acceptable in terms of texture and sensory properties compared to cake produced with shortening. Sensory results revealed that some cakes produced with oleogels were found to be more acceptable as compared with control group samples. In this respect, oleogels produced with safflower oil-based beeswax and rice bran wax could be used instead of commercial solid fat widely used in the cake industry.  相似文献   

6.
Conjugated linoleic acid‐rich soy oil (CLARSO) has been shown to have numerous health benefits, including anti‐obesity and anti‐carcinogenic properties. This oil was previously used to produce CLA‐rich margarine that showed physical characteristics similar to commercially available margarine. The objective of this study was to produce CLA‐rich shortening and analyze its physical properties relative to commercially available shortenings and soy oil control shortenings. The shortenings were prepared and their rheology, thermal behavior, and solid fat content (SFC) were determined and compared to the commercial samples. The CLA‐rich shortening samples showed similar rheological properties to the commercial samples and showed a better consistency (more solid‐like behavior) compared to the soy oil control samples. In addition, the CLA‐rich shortenings also have a higher SFC (% SFC) as well as higher latent heat of crystallization and melting than the soy oil controls indicating a comparatively higher crystalline fraction. Thus, CLARSO produced firmer shortenings than did conventional soy oil by interacting with the crystallizing stearin fraction and consequently increasing the crystalline mass fraction without significantly altering the microstructure kinetics of solid fat crystallization.  相似文献   

7.
A transesterified experimental solid frying shortening was prepared from a palm stearin/palm kernel olein blend at 1∶1 ratio (by weight) by using Rhizomucor miehei lipase at 60°C for 6 h. The fatty acid (FA) and triacylglycerol compositions, polymorphic forms, melting and cooling characteristics, slip melting point (SMP), and solid fat content (SFC) of the transesterified blend were then compared with five commercial solid frying shortenings (three domestic and two imported) found in Malaysia. All the domestic shortenings contained nonhydrogenated palm oil or palm olein and palm stearin as the hard stock, whereas the imported frying shortenings were formulated from soybean oil and cottonseed oil and contained high level of β′ crystals. Trans FA were also found in these samples. The lipase-transesterified blend was found to be more β′-tending than the domestic samples. The SMP of the transesterified blend (47.0°C) fell within the range of the domestic samples (37.8–49.7°C) but was higher than the imported ones (42.3–43.0°C). All samples exhibited similar differential scanning calorimetry cooling profiles, with a narrow peak at the higher temperatures and a broad peak at the lower temperatures, even though their heating thermograms were quite different. Imported samples had flatter SFC curves than both the experimental and domestic samples. The domestic samples were found to have better workability or plasticity at higher temperatures than the imported ones, probably because they were formulated for a tropical climate.  相似文献   

8.
Soybean oil was partially hydrogenated using Pt supported in microporous zeolite ZSM-5 and on mesoporous alumina at various IV. Their fatty acid and triacylglycerol composition were determined with GC and HPLC, respectively, and their physical characteristics were monitored by the slip melting point, solid fat content, melting and crystallization thermograms, polymorphism behavior, and the crystal and solid fat network formation. Both the chemical and physical properties were compared with commercial fat samples. Usage of Pt instead of Ni results in a significant reduction in trans fatty acids in the hardened fat. Moreover, the catalyst support of Pt, viz. zeolite ZSM-5 versus γ-alumina, markedly affects the TAG composition. Pt/alumina fats contain large amounts of SSS and polyunsaturates (PUFA), making them unsuitable for shortening application. Because of the (regio)selective hydrogenation property of Pt/ZSM-5, sn-2 unsaturates are hydrogenated faster, yielding an enrichment of intermediately reduced TAG. In addition, this unique fat composition shows a high nutritional added-value (high content of oleate, very low content of trans fatty acids, and low content of cholesterol-raising palmitate and myristate) and high thermal stability (very low in linolenate). Moreover, their melting characteristics perfectly match those of commercial shortenings. Pt/zeolite hardened soybean oil contains spherulitic crystals with orthorhombic β′ molecular packing, arranged in an open, flexible solid network, in accordance with their high plasticity.  相似文献   

9.
In this study, safflower oil oleogels were made using propolis wax and carnauba wax in three different concentrations each, and their effectiveness as a fat substitute in cake was evaluated afterward. Oleogels' oxidative stability and characterization were looked into. In oleogels, the oil binding capacity, solid fat content, and crystallization time were all assessed. The cakes underwent an examination for moisture content, texture, and sensory evaluation. Additionally, analyses of fatty acid composition, free fatty acidity, oxidative stability (peroxide value, conjugated diene-triene), 3-monochloropropane-1,2-diol (3-MCPD), and glycidyl were carried out both before and after baking in oleogels and shortening. Several of the physical, textural, and sensory qualities of the oleogel-based cakes were acceptable when compared to those of the shortening-based cakes. The general acceptability of cakes made with carnauba wax was very high and almost under control. The acceptability of cakes made with propolis wax oleogels was lower than this. The study of these criteria has shown that safflower oil-based carnauba and propolis wax oleogels can be utilized to produce high-quality, healthful cakes with a high amount of unsaturated fatty acids. Practical Applications : To replace fat phases in cake products high in saturated fatty acids and to enhance the fatty acid profile of the cakes, safflower oil-based oleogels with propolis wax and carnauba wax are a very good option. The results obtained provide useful information for the production of high-quality cakes with higher unsaturated fatty acid content, recommended for a healthier diet, with these oleogels containing different concentrations of oleogelator.  相似文献   

10.
The composition and physical properties of roll‐in shortenings, commonly rich in trans and saturated fatty acids, were investigated and compared to other specialty fats, to provide insights into the physico‐chemical origins of their functionality. Triacylglycerols and fatty acid composition, polymorphic and melting behavior, solid fat content and large deformation rheological properties were determined. Roll‐in shortenings contained higher amounts of trisaturated and unsaturated triacylglycerols (12–27 %; 47–62 %) than other shortenings (9–11 %; 6–44 %). However, all exhibited high levels of saturates and trans fatty acids and similar crystal characteristics: β′ or mixed β′ and β, irrespective of their end use. Roll‐in shortenings had comparable melting peaks (42–52 °C) but sharper melting endotherms with higher enthalpies (38.6–43.3 J/g) than other bakery fats (18.7–25.4 J/g). This was in accordance with their well‐defined short spacings, indicative of smaller crystallites with more‐ordered packing. Solid fat profiles of roll‐in shortenings were akin to all purpose and cake interesterified shortenings, but not to all‐purpose and icing shortenings which displayed substantial melting as temperature rises. Differences in large deformation rheology (yield stress: σ*, apparent Young modulus: Eapp, yield value: C) were marginal and inconsistent with their solid fat content. Roll‐in shortenings exhibited Eapp, σ and C in the order of 1–2 × 106, 4–7 × 104, and 7–29 × 104 Pa, respectively. Particularly, the σ*and C, previously established as major parameters to specify the functionality of roll‐in shortenings, were not significantly different (p > 0.05). Overall, roll‐in shortening differed from other samples in regard to molecular makeup but not greatly in their physical parameters, suggesting that triacylglycerol composition has important implications on their functionality.  相似文献   

11.
Interesterification of tallow and sunflower oil   总被引:2,自引:2,他引:0  
The objective of this study was to manufacture a shortening using chemical interesterification (IT) of tallow-sunflower oil blends to replace fish oil in the present formulation, which is now in short supply in Chile. The significant variables of the IT process were obtained by 24−1 fractional factorial design. The proportion of tallow (T) in the blend, catalyst concentration, and reaction temperature had a significant effect on the melting point (mp) (P≤0.05). IT of tallow and sunflower oil blends (90∶10 and 70∶30) diminished the mp, dropping point, and refractive index compared to tallow. However, a noninteresterified 90∶10 blend mp was not significantly different from tallow. IT produced a solid fat content (SFC) profile of IT90∶10 blend that was appropriate for use in shortenings for the baking industry. Blending and IT of the 90∶10 blend increased the melting profile of the tallow and the melting range from −40 to 60°C while the endotherms of the middle-melting triacylglycerols (TAG) decreased. The IT90∶10 blend hardnesswas 70% lower than tallow hardness, and the crystal network was composed of large spherulites in a network. IT resulted in an appropriate method to improve physical properties of tallow, whereas blending did not significantly modify it. The interesterification changed the SFC profile of IT90∶10, giving a more appropriate shortening for use in the baking industry.  相似文献   

12.
Shortenings based on palm oil (PO), combinations of PO and butter fat (BF) at a ratio of PO:BF = 3:2 and PO:BF = 2:3 and 100% BF were evaluated. In the case of PO shortening, 0.2% diacetyl flavour was added during processing. Baking tests indicated that combination of PO with BF produced higher specific batter volume and specific cake volume compared with PO shortening or 100% BF. The addition of BF to PO resulted in softer cake texture as indicated by instrumental measurement. Sensory evaluation indicated that cakes made with PO shortening with added diacetyl flavour (at 0.2%) resulted in significantly (p<0.05) higher scores in terms of grain size, softness and flavour compared to cakes made with 100% BF. However, there was no significant difference in the sensory scores of the cakes made with PO, PO:BF = 3:2 and PO:BF = 2:3 shortenings. Thus PO helped to improve performance of BF in production of yellow cake.  相似文献   

13.
Solid fat content of shortening and margarine was estimated by pulsed NMR. These values were compared with those of the melted fats using different cooling methods. Solid fat content of shortenings measured at 10 and 20 C followed the same trend as those measured on the melted fat tempered at 30 C. Solid fat content of margarines followed the same trend as those measured on the nontempered fats. Softening points of the products were similar to the dropping points of the fats, as were the temperatures of the DSC major melting peaks. Compression tests of cylindrical samples provided more information about textural characteristics of the products than one penetration tests.  相似文献   

14.
Investigation has been carried out with an intention to prepare shortening, margarine fat bases, and value-added edible fat products like cocobutter substitute from tallow. For this, tallow was fractionated at low (12 and 15 °C) and intermediate (25 °C) temperatures by solvent (acetone) fractionation process. The stearin fractions (yield: 23—40% (w/w) and slip melting point: 45—50.5 °C) thus obtained were blended and interesterified with liquid oils, such as sunflower, soybean, rice bran etc. by microbial lipase catalyzed route. The olein fractions (yield: 60—77% (w/w) and slip melting point: 21—32.5 °C) were also chemically interesterified (using NaOMe) and biochemically (using Rhizomucor miehei lipase, Lipozyme IM 20). The olein fractions were also blended with sal (Shorea robusta) fat, sal olein, and acidolysed karanja (Pongamia glabra) stearin. As revealed from their slip melting point and solid fat index, the products thus prepared were found to be suitable for shortening, margarine fat bases, and vanaspati substitute.  相似文献   

15.
Low-erucic acid rapeseed oil (LERO) and hydrogenated low-erucic acid rapeseed oil (HLERO) were blended in binary systems. The blends were then studied for their physical properties such as solid fat content, melting curves by DSC, textural properties, and polymorphism. Phase behavior diagrams were constructed from the DSC and X-ray results, and isosolid diagrams were constructed from the NMR results. The mixture of HLERO and LERO displayed a monotectic behavior for all the storage time at 15°C. The aim of this work was to evaluate physical characteristics of binary blends of HLERO and nonydrogenated LERO in order to use only LERO and hardened LERO in bakery shortenings. The mixture of 60% HLERO and 40% LERO is suitable to use as a plastic shortening. This blend is β tending upon storage at 15°C. It could be used in pie crust applications.  相似文献   

16.
Functional biscuits were formulated by replacing white shortening (WS) by red palm olein (RPOL) at 20, 40, 60, 80 and 100%. Sensory evaluation of fresh biscuits indicated that all RPOL levels were significantly as acceptable as or superior to the control. Consequently, two superior RPOL levels (40 and 60%) were chosen for further investigation along with the control. Biscuits made from 40% WS + 60% RPOL exhibited significantly the lowest values regarding water loss during baking, volume before baking, specific volume, specific lightness, water activity and shearing force. Triacylglycerol and fatty acid composition of formulated biscuits resembled their counterparts for RPOL. These biscuits contained 1.8 times more tocopherols and tocotrienols and 10.4–14.8 times more carotenes than the control. Meanwhile, packaged biscuits were able to be stored at room temperature in the light for not less than 6 months without any deterioration in their quality.  相似文献   

17.
A number of North American vegetable and animal fat shortenings were evaluated for their melting, crystallization, textural and polymorphic crystal characteristics and solid fat content (SFC). The majority of the dropping points and crystallization temperatures of the fats ranged from 42 to 46°C and from 27 to 31°C, respectively. Softening points of the products were higher than the dropping points of their fats, especially for the vegetable shortenings. Differential scanning calorimetry melting curves of the products were different for the various products. The animal fat shortenings were mainly in theβ-polymorphic form, while vegetable shortenings containing palm oil were in theβ′ form. Textural evaluation was carried out on the products with the cone penetrometer, constant speed penetration and constant speed compression. Constant speed compression supplied a measure of brittleness and a degree of viscosity. Lard and shortenings containing high levels of palm oil were able to withstand large deformations without breakage. The effect of tempering temperature of the fat in the SFC determination was evaluated and the values obtained were compared with the SFC of the actual product. SFC of fat and product were determined by pulse nuclear magnetic resonance. Correlation of values within textural methods was significant (P<..01), but were not significant between texture and SFC of the fat, indicating that the nature of the crystal network also plays a role in texture.  相似文献   

18.
Rice bran oil structured lipid (RBOSL) was produced from rice bran oil (RBO) and the medium chain fatty acid (MCFA), caprylic acid, with Lipozyme RM IM as biocatalyst. RBOSL and RBO were mixed with palm stearin (PS) in ratios of 30:70, 40:60, 50:50, 60:40 and 70:30 v/v (RBOSL to PS) to formulate trans-free shortenings. Fatty acid profiles, solid fat content (SFC), melting and crystallization curves and crystal morphology were determined. The content of caprylic acid in shortening blends with RBOSL ranged from 9.92 to 22.14 mol%. Shortening blends containing 30:70 and 60:40 RBOSL or RBO and PS had fatty acid profiles similar to a commercial shortening (CS). SFCs for blends were within the desired range for CS of 10–50% at 10–40 °C. Shortening blends containing higher amounts of RBOSL or RBO had melting and crystallization curves similar to CS. All shortening blends contained primarily β′ crystals. RBOSL blended with PS was comparable to RBO in producing shortenings with fatty acid profiles, SFC, melting and crystallization profiles and crystal morphologies that were similar. RBOSL blended with PS can possibly provide healthier alternative to some oils currently blended with PS and commercial shortening to produce trans-free shortening because of the health benefits of the MCFA in RBOSL.  相似文献   

19.
An experiment involving the commercial production and packaging of two types of Army ration biscuits prepared from common ingredients with nine lots of vegetable oil shortening of increasing stability values and two lots of lard as the only ingredient variables has been described, and the initial analytical data presented. Evaluation of accelerated stability tests on both shortenings and biscuit shows that:
  1. A linear relationship exists between Swift Stability (A.O.M.) and oxygen absorption (Warburg) values obtained on cottonseed oil and soybean oil shortening.
  2. Increasing the accelerated stability values of the shortening by additional hydrogenation of the vegetable oils resulted in greater accelerated stability values for the biscuits containing the corresponding shortenings. A nearly direct relationship was found between the stability of soybean oil shortenings (Swift Stability Values) with the stability of the corresponding biscuits (Rancimeter). In the case of the cottonseed oil shortenings the increase in biscuit stability was marked to about a 100-hour accelerated stability value, but was much less pronounced above 100 hours.
  3. Addition of commercial lecithin increased the stability values of the biscuits containing cottonseed oil shortenings, but had an adverse effect on the stability of biscuits containing lard and lard plus N.D.G.A.
Results obtained from examinations of biscuits packaged in fiberboard cartons, punched cans, and sealed cans and stored for two years at 70°F. and 100°F. are contained in the second paper of this series.  相似文献   

20.
Baking performance of palm diacylglycerol (PDG)‐enriched fats was evaluated and compared with that of commercial bakery fats. PDG‐enriched shortenings were found to produce cakes with significantly (p<0.05) higher mean values for specific volume than that produced from commercial shortening. As for PDG‐enriched margarines, cookies prepared from PDG‐enriched margarines were found to have reduction in cookies spread as compared to that of commercial shortening. Nevertheless, this reduction was not statistically significant. Sensory evaluation of the baked products was also conducted. Both trained and untrained panelists rated cakes prepared from PDG‐enriched shortenings as having higher moistness, softer, and airier texture than that of commercial shortening. This is in agreement with findings from principal component analysis (PCA). As for cookies, both trained and untrained panelists rated cookies prepared from PDG‐enriched margarines as having softer texture and compactness compared to that prepared from commercial margarine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号